Loading [MathJax]/jax/element/mml/optable/MathOperators.js
91学 首页 > 数学 > 高考题 > 2024 > 2024年天津 > 正文 返回 打印

2024年高考数学天津14

  2024-08-28 22:48:04  

(5分)在正方形ABCD中,边长为1.E为线段CD的三等分点,EC=12DEBE=λBA+μBC,则λ+μ=____;若F为线段BE上的动点,GAF中点,则AFDG的最小值为 ____.

答案:43518
分析:由题意可知BE=BA+AD+DE,再结合EC=12DE可得BE=13BA+BC,进而求出λμ的值,得到λ+μ的值;设BF=mBE(0m1),可得AF=(13m1)BA+mBCDG=(16m12)BA+(12m1)BC,易知BA2=1BABC=0,即可求出AFDG,再结合二次函数的性质求解即可.
解:由题意可知,BE=BA+AD+DE=BA+BC+23DC=BA+BC23CD=BA+BC23BA=13BA+BC
\lambda =\dfrac{1}{3}\mu =1
\therefore \lambda +\mu =\dfrac{4}{3}
如图:

\overrightarrow{BF}=m\overrightarrow{BE}(0\leqslant m\leqslant 1)
\overrightarrow{AF}=\overrightarrow{AB}+\overrightarrow{BF}=-\overrightarrow{BA}+m\overrightarrow{BE}=-\overrightarrow{BA}+m(\dfrac{1}{3}\overrightarrow{BA}+\overrightarrow{BC})=(\dfrac{1}{3}m-1)\overrightarrow{BA}+m\overrightarrow{BC}
\because GAF中点,
\therefore\overrightarrow{DG}=\overrightarrow{DA}+\overrightarrow{AG}=-\overrightarrow{BC}+\dfrac{1}{2}\overrightarrow{AF}=-\overrightarrow{BC}+\dfrac{1}{2}[(\dfrac{1}{3}m-1)\overrightarrow{BA}+m\overrightarrow{BC}]=(\dfrac{1}{6}m-\dfrac{1}{2})\overrightarrow{BA}+(\dfrac{1}{2}m-1)\overrightarrow{BC}
\because正方形ABCD的边长为1,
\therefore{\overrightarrow{BA}}^{2}=1\overrightarrow{BA}\cdot \overrightarrow{BC}=0
\therefore\overrightarrow{AF}\cdot \overrightarrow{DG}=[(\dfrac{1}{3}m-1)\overrightarrow{BA}+m\overrightarrow{BC}]\cdot [(\dfrac{1}{6}m-\dfrac{1}{2})\overrightarrow{BA}+(\dfrac{1}{2}m-1)\overrightarrow{BC}]=(\dfrac{1}{3}m-1)(\dfrac{1}{6}m-\dfrac{1}{2})+m(\dfrac{1}{2}m-1)=\dfrac{5}{9}{m}^{2}-\dfrac{4}{3}m+\dfrac{1}{2}
对于函数y=\dfrac{5}{9}{m}^{2}-\dfrac{4}{3}m+\dfrac{1}{2},对称轴为m=\dfrac{6}{5}
\therefore函数y=\dfrac{5}{9}{m}^{2}-\dfrac{4}{3}m+\dfrac{1}{2}[01]上单调递减,
\thereforem=1时,函数y=\dfrac{5}{9}{m}^{2}-\dfrac{4}{3}m+\dfrac{1}{2}取得最小值-\dfrac{5}{18}
\overrightarrow{AF}\cdot \overrightarrow{DG}的最小为-\dfrac{5}{18}
故答案为:\dfrac{4}{3}-\dfrac{5}{18}
点评:本题主要考查了平面向量的线性运算和数量积运算,考查了二次函数的性质,属于中档题.

http://x.91apu.com//shuxue/gkt/2024/2024tj/2024-08-28/34270.html