91学 首页 > 数学 > 高考题 > 2024 > 2024年全国甲文 > 正文 返回 打印

2024年高考数学甲卷-文14

  2024-08-28 22:15:26  

(5分)已知甲、乙两个圆台上下底面的半径均为$r_{2}$和$r_{1}$,母线长分别为$2(r_{1}-r_{2})$和$3(r_{1}-r_{2})$,则两个圆台的体积之比$\dfrac{{{V}_{}}}{{{V}_{}}}=$____.
分析:由已知结合圆台的体积公式即可求解.
解:因为甲、乙两个圆台上下底面的半径均为$r_{2}$和$r_{1}$,母线长分别为$2(r_{1}-r_{2})$和$3(r_{1}-r_{2})$,
则两个圆台的体积之比$\dfrac{{{V}_{}}}{{{V}_{}}}=\dfrac{\dfrac{1}{3}\left( {{S}_{1}}+{{S}_{2}}+\sqrt{{{S}_{1}}{{S}_{2}}} \right){{h}_{}}}{\dfrac{1}{3}\left( {{S}_{1}}+{{S}_{2}}+\sqrt{{{S}_{1}}{{S}_{2}}} \right){{h}_{}}}=\dfrac{{{h}_{}}}{{{h}_{}}}=\dfrac{\sqrt{{{[2\left( {{r}_{1}}-{{r}_{2}} \right)]}^{2}}-{{({{r}_{1}}-{{r}_{2}})}^{2}}}}{\sqrt{{{[3\left( {{r}_{1}}-{{r}_{2}} \right)]}^{2}}-{{({{r}_{1}}-{{r}_{2}})}^{2}}}}\dfrac{\sqrt{3}\left( {{r}_{1}}-{{r}_{2}} \right)}{2\sqrt{2}\left( {{r}_{1}}-{{r}_{2}} \right)}=\dfrac{\sqrt{6}}{4}$.
故答案为:$\dfrac{\sqrt{6}}{4}$.
点评:本题主要考查了圆台的体积公式的应用,属于基础题.

http://x.91apu.com//shuxue/gkt/2024/2024qgjw/2024-08-28/34226.html