(5分)已知$\dfrac{\cos \alpha }{\cos \alpha -\sin \alpha }=\sqrt{3}$,则$\tan (\alpha +\dfrac{\pi }{4})=$( ) A.$2\sqrt{3}+1$ B.$2\sqrt{3}-1$ C.$\dfrac{\sqrt{3}}{2}$ D.$1-\sqrt{3}$
答案:B 分析:先求出$\tan \alpha$,再结合正切的两角和公式,即可求解. 解:$\dfrac{\cos \alpha }{\cos \alpha -\sin \alpha }=\sqrt{3}$, 则$\dfrac{1}{1-\tan \alpha }=\sqrt{3}$,所以$\tan \alpha =1-\dfrac{\sqrt{3}}{3}$, 故$\tan (\alpha +\dfrac{\pi }{4})=\dfrac{\tan \alpha +1}{1-\tan \alpha }=2\sqrt{3}-1$. 故选:B. 点评:本题主要考查两角和与差的三角函数,属于基础题.
|