(5分)二项式$(\dfrac{1}{3}+x)^{10}$的展开式中,各项系数的最大值是 ____. 分析:根据已知条件,结合二项式定理,即可求解. 解:由于${C}_{10}^{6}={C}_{10}^{4}$,${C}_{10}^{7}={C}_{10}^{3}$,${C}_{10}^{8}={C}_{10}^{2}$,${C}_{10}^{9}={C}_{10}^{1}$, 则展开式中系数最大的项一定在下面的5项:$C_{10}^{5}(\dfrac{1}{3})^{5}=\dfrac{28}{27}$, ${C}_{10}^{6}(\dfrac{1}{3})^{4}=\dfrac{70}{27}$,${C}_{10}^{7}(\dfrac{1}{3})^{3}=\dfrac{40}{9}$,${C}_{10}^{8}(\dfrac{1}{3})^{2}=5$,$C_{10}^{9}(\dfrac{1}{3})^{1}=\dfrac{10}{3}$, 故系数的最大值为$C_{10}^{8}(\dfrac{1}{3})^2=5$. 故答案为:5. 点评:本题主要考查二项式定理的应用,属于基础题.
|