Processing math: 100%
91学 首页 > 数学 > 高考题 > 2024 > 2024年新高考2 > 正文 返回 打印

2024年高考数学新高考Ⅱ-19

  2024-08-27 16:01:08  

(17分)已知双曲线C:x2y2=m(m>0),点P1(5,4)C上,k为常数,0<k<1,按照如下方式依次构造点Pn(n=2,3,),过Pn1斜率为k的直线与C的左支交于点Qn1,令PnQn1关于y轴的对称点,记Pn的坐标为(xnyn)
(1)若k=12,求x2y2
(2)证明:数列{xnyn}是公比为1+k1k的等比数列;
(3)设Sn为△PnPn+1Pn+2的面积,证明:对任意的正整数nSn=Sn+1
分析:(1)根据已知条件,先求出直线方程,再与曲线方程联立,即可求解;
(2)根据已知条件,推得ynyn1xnxn1=k,再结合Pn1Qn1都在双曲线上,以及等比数列的定义,即可求证;
(3)要证:Sn=Sn+1,只需先尝试Pn+1Pn+2//PnPn+3,即先证kPn+1Pn+2=kPnPn+3,再结合换元法,以及直线的斜率公式,即可求解.
解:(1)P1(5,4)C上,
2516=m,解得m=9
P(5,4)且斜率为k=12的直线方程为y4=12(x5),即x2y+3=0
联立{x2y2=9x2y+3=0,解得{x=5y=4{x=3y=0
Q1(3,0)P2(3,0)
Pn1斜率为k的直线与C的左支交于点Qn1,令PnQn1关于y轴的对称点,
所以x2=3y2=0
(2)证明:Pn(xnyn)关于y轴的对称点是Qn1(xnyn)
Pn1(xn1yn1)Pn1Qn1都在同一条斜率为k的直线上,xn1xn
ynyn1xnxn1=k
Pn1Qn1都在双曲线上,
{x2ny2n=9x2n1y2n1=9,两式相减可得,(xnxn1)(xn+xn1)=(ynyn1)(yn+yn1)
ynyn1=k(xn+xn1)①,xnxn1=k(yn+yn1)②,
则②①可得,xnyn(xn1yn1)=k(xnyn)+k(xn1yn1)
(1k)(xnyn)=(1+k)(xn1yn1)
xnynxn1yn1=1+k1k
故数列{xnyn}是公比为1+k1k的等比数列;
(3)证明:要证:Sn=Sn+1,只需先尝试Pn+1Pn+2//PnPn+3
即先证kPn+1Pn+2=kPnPn+3
t=1+k1k
0<k<1
t>1
xnyn=(x1y1)(1+k1k)n1=tn1
x2ny2n=9
xn+yn=9t1n
yn=12(tn1+9t1n)
kPn+1Pn+2
=xn+2xn+1yn+2yn+1
=yn+2+tn+1yn+1tnyn+2yn+1
=1+2tn(t1)(tn+19t1n)(tn+9tn)
=1+2tn(t1)(9t1ntn)(t1)
=12tn9t1n+tn
kPnPn+3
=yn+3+tn+2yntn1yn+3yn
=1+2tn1(t31)(tn+2+9t2n)(tn1+9t1n)
=1+2tn1(t31)(9t2ntn1)(t31)
=12tn19t2n+tn1
=12tn9t1n+tn
kPn+1Pn+2=kPnPn+3
Pn+1Pn+2//PnPn+3
Sn=Sn+1
点评:本题主要考查数列的应用,考查转化能力,属于难题.

http://x.91apu.com//shuxue/gkt/2024/2024xgk2/2024-08-27/34189.html