91学 首页 > 数学 > 高考题 > 2024 > 2024年新高考2 > 正文 返回 打印

2024年高考数学新高考Ⅱ-19

  2024-08-27 16:01:08  

(17分)已知双曲线$C:x^{2}-y^{2}=m(m > 0)$,点$P_{1}(5,4)$在$C$上,$k$为常数,$0 < k < 1$,按照如下方式依次构造点$P_{n}(n=2$,3,$\dotsb )$,过$P_{n-1}$斜率为$k$的直线与$C$的左支交于点$Q_{n-1}$,令$P_{n}$为$Q_{n-1}$关于$y$轴的对称点,记$P_{n}$的坐标为$(x_{n}$,$y_{n})$.
(1)若$k=\dfrac{1}{2}$,求$x_{2}$,$y_{2}$;
(2)证明:数列$\{x_{n}-y_{n}\}$是公比为$\dfrac{1+k}{1-k}$的等比数列;
(3)设$S_{n}$为△$P_{n}P_{n+1}P_{n+2}$的面积,证明:对任意的正整数$n$,$S_{n}=S_{n+1}$.
分析:(1)根据已知条件,先求出直线方程,再与曲线方程联立,即可求解;
(2)根据已知条件,推得$\dfrac{y_n-y_{n-1}}{-x_n-x_{n-1}}=k$,再结合$P_{n-1}$,$Q_{n-1}$都在双曲线上,以及等比数列的定义,即可求证;
(3)要证:$S_{n}=S_{n+1}$,只需先尝试$P_{n+1}P_{n+2}//P_{n}P_{n+3}$,即先证${k}_{{P}_{n+1}{P}_{n+2}}={k}_{{P}_{n}{P}_{n+3}}$,再结合换元法,以及直线的斜率公式,即可求解.
解:(1)$\because P_{1}(5,4)$在$C$上,
$\therefore 25-16=m$,解得$m=9$,
过$P(5,4)$且斜率为$k=\dfrac{1}{2}$的直线方程为$y-4=\dfrac{1}{2}(x-5)$,即$x-2y+3=0$,
联立$\left\{\begin{array}{l}{{x}^{2}-{y}^{2}=9}\\ {x-2y+3=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=5}\\ {y=4}\end{array}\right.$或$\left\{\begin{array}{l}{x=3}\\ {y=0}\end{array}\right.$,
故$Q_{1}(-3,0)$,$P_{2}(3,0)$,
过$P_{n-1}$斜率为$k$的直线与$C$的左支交于点$Q_{n-1}$,令$P_{n}$为$Q_{n-1}$关于$y$轴的对称点,
所以$x_{2}=3$,$y_{2}=0$;
(2)证明:$\because P_{n}(x_{n}$,$y_{n})$关于$y$轴的对称点是$Q_{n-1}(-x_{n}$,$y_{n})$,
$P_{n-1}(x_{n-1}$,$y_{n-1})$,$P_{n-1}$,$Q_{n-1}$都在同一条斜率为$k$的直线上,$x_{n-1}\ne -x_{n}$;
则$\dfrac{y_n-y_{n-1}}{-x_n-x_{n-1}}=k$,
$\because P_{n-1}$,$Q_{n-1}$都在双曲线上,
$\therefore$$\left\{\begin{array}{l}{{x}_{n}^{2}-{y}_{n}^{2}=9}\\ {{x}_{n-1}^{2}-{y}_{n-1}^{2}=9}\end{array}\right.$,两式相减可得,$(x_{n}-x_{n-1})(x_{n}+x_{n-1})=(y_{n}-y_{n-1})(y_{n}+y_{n-1})$,
而$y_{n}-y_{n-1}=-k(x_{n}+x_{n-1})$①,$x_{n}-x_{n-1}=-k(y_{n}+y_{n-1})$②,
则②$-$①可得,$x_{n}-y_{n}-(x_{n-1}-y_{n-1})=k(x_{n}-y_{n})+k(x_{n-1}-y_{n-1})$,
则$(1-k)(x_{n}-y_{n})=(1+k)(x_{n-1}-y_{n-1})$,
$\therefore$$\dfrac{x_n-y_n}{x_{n-1}-y_{n-1}}=\dfrac{1+k}{1-k}$,
故数列$\{x_{n}-y_{n}\}$是公比为$\dfrac{1+k}{1-k}$的等比数列;
(3)证明:要证:$S_{n}=S_{n+1}$,只需先尝试$P_{n+1}P_{n+2}//P_{n}P_{n+3}$,
即先证${k}_{{P}_{n+1}{P}_{n+2}}={k}_{{P}_{n}{P}_{n+3}}$,
记$t=\dfrac{1+k}{1-k}$,
$0 < k < 1$,
则$t > 1$,
$x_n-y_n=(x_1-y_1)(\dfrac{1+k}{1-k})^{n-1}=t^{n-1}$,
而$x_n^2-y_n^2=9$,
$\therefore$$x_n+y_n=9t^{1-n}$,
$\therefore$$y_{n}=\dfrac{1}{2}(-t^{n-1}+9t^{1-n})$,
$\therefore$${k}_{{P}_{n+1}{P}_{n+2}}$
$=\dfrac{x_{n+2}-x_{n+1}}{y_{n+2}-y_{n+1}}$
$=\dfrac{y_{n+2}+t^{n+1}-y_{n+1}-t^{n}}{y_{n+2}-y_{n+1}}$
$=1+\dfrac{2t^{n}(t-1)}{(-t^{n+1}9t^{-1-n})-(-t^{n}+9t^{-n})}$
$=1+\dfrac{2t^{n}(t-1)}{(-9t^{-1-n}-t^{n})(t-1)}$
$=1-\dfrac{2t^{n}}{9t^{-1-n}+t^{n}}$,
${k}_{{P}_{n}{P}_{n+3}}$
$=\dfrac{y_{n+3}+t^{n+2}-y_{n}-t^{n-1}}{y_{n+3}-y_{n}}$
$=1+\dfrac{2t^{n-1}(t^{3}-1)}{(-t^{n+2}+9t^{-2-n})-(-t^{n-1}+9t^{1-n})}$
$=1+\dfrac{2t^{n-1}(t^{3}-1)}{(-9t^{-2-n}-t^{n-1})(t^{3}-1)}$
$=1-\dfrac{2t^{n-1}}{9t^{-2-n}+t^{n-1}}$
$=1-\dfrac{2t^{n}}{9t^{-1-n}+t^{n}}$,
$\therefore$${k}_{{P}_{n+1}{P}_{n+2}}={k}_{{P}_{n}{P}_{n+3}}$,
$\therefore P_{n+1}P_{n+2}//P_{n}P_{n+3}$,
$\therefore S_{n}=S_{n+1}$.
点评:本题主要考查数列的应用,考查转化能力,属于难题.

http://x.91apu.com//shuxue/gkt/2024/2024xgk2/2024-08-27/34189.html