2024年高考数学新高考Ⅱ-19 |
|
2024-08-27 16:01:08 |
|
(17分)已知双曲线C:x2−y2=m(m>0),点P1(5,4)在C上,k为常数,0<k<1,按照如下方式依次构造点Pn(n=2,3,⋯),过Pn−1斜率为k的直线与C的左支交于点Qn−1,令Pn为Qn−1关于y轴的对称点,记Pn的坐标为(xn,yn). (1)若k=12,求x2,y2; (2)证明:数列{xn−yn}是公比为1+k1−k的等比数列; (3)设Sn为△PnPn+1Pn+2的面积,证明:对任意的正整数n,Sn=Sn+1. 分析:(1)根据已知条件,先求出直线方程,再与曲线方程联立,即可求解; (2)根据已知条件,推得yn−yn−1−xn−xn−1=k,再结合Pn−1,Qn−1都在双曲线上,以及等比数列的定义,即可求证; (3)要证:Sn=Sn+1,只需先尝试Pn+1Pn+2//PnPn+3,即先证kPn+1Pn+2=kPnPn+3,再结合换元法,以及直线的斜率公式,即可求解. 解:(1)∵P1(5,4)在C上, ∴25−16=m,解得m=9, 过P(5,4)且斜率为k=12的直线方程为y−4=12(x−5),即x−2y+3=0, 联立{x2−y2=9x−2y+3=0,解得{x=5y=4或{x=3y=0, 故Q1(−3,0),P2(3,0), 过Pn−1斜率为k的直线与C的左支交于点Qn−1,令Pn为Qn−1关于y轴的对称点, 所以x2=3,y2=0; (2)证明:∵Pn(xn,yn)关于y轴的对称点是Qn−1(−xn,yn), Pn−1(xn−1,yn−1),Pn−1,Qn−1都在同一条斜率为k的直线上,xn−1≠−xn; 则yn−yn−1−xn−xn−1=k, ∵Pn−1,Qn−1都在双曲线上, ∴{x2n−y2n=9x2n−1−y2n−1=9,两式相减可得,(xn−xn−1)(xn+xn−1)=(yn−yn−1)(yn+yn−1), 而yn−yn−1=−k(xn+xn−1)①,xn−xn−1=−k(yn+yn−1)②, 则②−①可得,xn−yn−(xn−1−yn−1)=k(xn−yn)+k(xn−1−yn−1), 则(1−k)(xn−yn)=(1+k)(xn−1−yn−1), ∴xn−ynxn−1−yn−1=1+k1−k, 故数列{xn−yn}是公比为1+k1−k的等比数列; (3)证明:要证:Sn=Sn+1,只需先尝试Pn+1Pn+2//PnPn+3, 即先证kPn+1Pn+2=kPnPn+3, 记t=1+k1−k, 0<k<1, 则t>1, xn−yn=(x1−y1)(1+k1−k)n−1=tn−1, 而x2n−y2n=9, ∴xn+yn=9t1−n, ∴yn=12(−tn−1+9t1−n), ∴kPn+1Pn+2 =xn+2−xn+1yn+2−yn+1 =yn+2+tn+1−yn+1−tnyn+2−yn+1 =1+2tn(t−1)(−tn+19t−1−n)−(−tn+9t−n) =1+2tn(t−1)(−9t−1−n−tn)(t−1) =1−2tn9t−1−n+tn, kPnPn+3 =yn+3+tn+2−yn−tn−1yn+3−yn =1+2tn−1(t3−1)(−tn+2+9t−2−n)−(−tn−1+9t1−n) =1+2tn−1(t3−1)(−9t−2−n−tn−1)(t3−1) =1−2tn−19t−2−n+tn−1 =1−2tn9t−1−n+tn, ∴kPn+1Pn+2=kPnPn+3, ∴Pn+1Pn+2//PnPn+3, ∴Sn=Sn+1. 点评:本题主要考查数列的应用,考查转化能力,属于难题.
|
|
http://x.91apu.com//shuxue/gkt/2024/2024xgk2/2024-08-27/34189.html |