(5分)已知$\cos (\alpha +\beta )=m$,$\tan \alpha \tan \beta =2$,则$\cos (\alpha -\beta )=$( ) A.$-3m$ B.$-\dfrac{m}{3}$ C.$\dfrac{m}{3}$ D.$3m$ 答案:A 分析:由已知结合同角基本关系及两角和与差的余弦公式即可求解. 解:因为$\cos (\alpha +\beta )=\cos \alpha \cos \beta -\sin \alpha \sin \beta =m$, 由$\tan \alpha \tan \beta =\dfrac{\sin \alpha \sin \beta }{\cos \alpha \cos \beta }=2$,可得$\sin \alpha \sin \beta =2\cos \alpha \cos \beta$, 所以$\cos \alpha \cos \beta =-m$,$\sin \alpha \sin \beta =-2m$, 则$\cos (\alpha -\beta )=\cos \alpha \cos \beta +\sin \alpha \sin \beta =-3m$. 故选:A. 点评:本题主要考查了三角函数基本关系及和差角公式的应用,属于基础题.
|