2023年高考数学上海春20 |
|
2023-07-08 14:37:36 |
|
(18分)已知椭圆$\Gamma :\dfrac{x^2}{m^2}+\dfrac{y^2}{3}=1(m > 0$且$m\ne \sqrt{3})$. (1)若$m=2$,求椭圆$\Gamma$的离心率; (2)设$A_{1}$、$A_{2}$为椭圆$\Gamma$的左右顶点,椭圆$\Gamma$上一点$E$的纵坐标为1,且$\overrightarrow{E{A_1}}\cdot \overrightarrow{E{A_2}}=-2$,求实数$m$的值; (3)过椭圆$\Gamma$上一点$P$作斜率为$\sqrt{3}$的直线$l$,若直线$l$与双曲线$\dfrac{y^2}{5{m^2}}-\dfrac{x^2}{5}=1$有且仅有一个公共点,求实数$m$的取值范围. 分析:(1)由题意可得$a$,$b$,$c$,可求离心率; (2)由已知得$A_{1}(-m,0)$,$A_{2}(m,0)$,设$E(p,1)$,由已知可得$p^{2}=\dfrac{2}{3}m^{2}$,$p^{2}-m^{2}+1=-2$,求解即可; (3)设直线$y=\sqrt{3}x+t$,与椭圆方程联立可得$t^{2}\leqslant 3m^{2}+3$,与双曲线方程联立可得$t^{2}=5m^{2}-15$,可求$m$的取值范围. 解:(1)若$m=2$,则$a^{2}=4$,$b^{2}=3$,$\therefore a=2$,$c=\sqrt{{a}^{2}-{b}^{2}}=1$,$\therefore e=\dfrac{c}{a}=\dfrac{1}{2}$; (2)由已知得$A_{1}(-m,0)$,$A_{2}(m,0)$,设$E(p,1)$, $\therefore$$\dfrac{{p}^{2}}{{m}^{2}}+\dfrac{1}{3}=1$,即$p^{2}=\dfrac{2}{3}m^{2}$, $\therefore$$\overrightarrow{E{A}_{1}}=(-m-p,-1)$,$\overrightarrow{E{A}_{2}}=(m-p,-1)$,$\therefore$$\overrightarrow{E{A}_{1}}\cdot \overrightarrow{E{A}_{2}}=(-m-p$,$-1)\cdot (m-p$,$-1)=p^{2}-m^{2}+1=-2$, $\because p^{2}=\dfrac{2}{3}m^{2}$,代入求得$m=3$; (3)设直线$y=\sqrt{3}x+t$,联立椭圆可得$\dfrac{{x}^{2}}{{m}^{2}}+\dfrac{(\sqrt{3}x+t)^{2}}{3}=1$, 整理得$(3+3m^{2})x^{2}+2\sqrt{3}tm^{2}x+(t^{2}-3)m^{2}=0$, 由△$\geqslant 0$,$\therefore t^{2}\leqslant 3m^{2}+3$, 联立双曲线可得$\dfrac{(\sqrt{3}x+t)^{2}}{5{m}^{2}}-\dfrac{{x}^{2}}{5}=1$,整理得$(3-m^{2})x^{2}+2\sqrt{3}tx+(t^{2}-5m^{2})=0$, 由△$=0$,$t^{2}=5m^{2}-15$, $\therefore 5m^{2}-15\leqslant 3m^{2}+3$, $\therefore -3\leqslant m\leqslant 3$, 又$5m^{2}-15\geqslant 0$,$\therefore m\geqslant \sqrt{3}$,$\because m\ne \sqrt{3}$, 综上所述:$m\in (\sqrt{3}$,$3]$. 点评:本题考查离心率的求法,考查椭圆与双曲线的几何性质,直线与椭圆的综合,属中档题.
|
|
http://x.91apu.com//shuxue/gkt/2023/2023shc/2023-07-08/33836.html |