(14分)在$\Delta ABC$中,角$A$、$B$、$C$所对应的边分别为$a$、$b$、$c$,其中$b=2$. (1)若$A+C=120^\circ$,$a=2c$,求边长$c$; (2)若$A-C=15^\circ$,$a=\sqrt{2}c\sin A$,求$\Delta ABC$的面积. 分析:(1)由已知结合和差角公式及正弦定理进行化简可求$A$,$B$,$C$,然后结合锐角三角函数即可求解; (2)由已知结合正弦定理先求出$\sin C$,进而可求$C$,再由正弦定理求出$a$,结合三角形面积公式可求. 解:(1)$\because A+C=120^\circ$,且$a=2c$, $\therefore \sin A=2\sin C=2\sin (120^\circ -A)=\sqrt{3}\cos A+\sin A$, $\therefore \cos A=0$, $\therefore A=90^\circ$,$C=30^\circ$,$B=60^\circ$, $\because b=2$, $\therefore c=\dfrac{2\sqrt{3}}{3}$; (2)$a=\sqrt{2}c\sin A$, 则$\sin A=\sqrt{2}\sin C\sin A$, $\sin A > 0$, $\therefore \sin C=\dfrac{\sqrt{2}}{2}$, $\because A-C=15^\circ$, $\therefore C$为锐角, $\therefore C=45^\circ$,$A=60^\circ$,$B=75^\circ$, $\therefore$$\dfrac{a}{\sin 60^\circ }=\dfrac{2}{\sin 75^\circ }=\dfrac{8}{\sqrt{2}+\sqrt{6}}$, $\therefore a=\dfrac{4\sqrt{3}}{\sqrt{2}+\sqrt{6}}=3\sqrt{2}-\sqrt{6}$, $\therefore S_{\Delta ABC}=\dfrac{1}{2}ab\sin C=\dfrac{1}{2}\times \dfrac{4\sqrt{3}}{\sqrt{2}+\sqrt{6}}\times 2\times \dfrac{\sqrt{2}}{2}=3-\sqrt{3}$. 点评:本题主要考查了和差角公式,正弦定理,三角形的面积公式在求解三角形中的应用,属于中档题.
|