(15分)已知$\{a_{n}\}$是等差数列,$a_{2}+a_{5}=16$,$a_{5}-a_{3}=4$. (Ⅰ)求$\{a_{n}\}$的通项公式和$\sum\limits_{i={2^{n-1}}}^{{2^n}-1}{a_i}$; (Ⅱ)已知$\{b_{n}\}$为等比数列,对于任意$k\in N^{*}$,若$2^{k-1}\leqslant n\leqslant 2^{k}-1$,则$b_{k} < a_{n} < b_{k+1}$. $(i)$当$k\geqslant 2$时,求证:$2^{k}-1 < b_{n} < 2^{k}+1$; $(ii)$求$\{b_{n}\}$的通项公式及其前$n$项和. 答案:(Ⅰ)$a_{n}=2n+1(n\in N^{\cdot })$,$\sum\limits_{i={2^{n-1}}}^{{2^n}-1}{a_i}=3\times 4^{n-1}$. (Ⅱ)$(i)$证明见解析; $(ii)b_{n}=2^{n}$,$T_{n}=2^{n+1}-2$. 分析:(Ⅰ)建立方程组求出首项和公差即可求解. (Ⅱ)根据数列递推关系,利用极限思想分别求出公比和首项,即可得到结论. 解:(Ⅰ)$\because \{a_{n}\}$是等差数列,$a_{2}+a_{5}=16$,$a_{5}-a_{3}=4$. $\therefore$$\left\{\begin{array}{l}{{a}_{1}+d+{a}_{1}+4d=2{a}_{1}+5d=16}\\ {{a}_{1}+4d-{a}_{1}-2d=2d=4}\end{array}\right.$,得$d=2$,$a_{1}=3$, 则$\{a_{n}\}$的通项公式$a_{n}=3+2(n-1)=2n+1(n\in N^{\cdot })$, $\sum\limits_{i={2^{n-1}}}^{{2^n}-1}{a_i}$中的首项为${a}_{i}=2\times {2}^{n-1}+1=2^{n}+1$,项数为$2^{n}-1-2^{n-1}+1=2^{n}-2^{n-1}=2\times 2^{n-1}-2^{n-1}=2^{n-1}$, 则$\sum\limits_{i={2^{n-1}}}^{{2^n}-1}{a_i}=2^{n-1}(2^{n}+1)+\dfrac{{2}^{n-1}({2}^{n-1}-1)}{2}\times 2=2^{n-1}(2^{n}+1)+2^{n-1}(2^{n-1}-1)=2^{n-1}(2^{n}+1+2^{n-1}-1)=2^{n-1}(2^{n}+2^{n-1})=2^{n-1}\times 3\times 2^{n-1}=3\times 4^{n-1}$. (Ⅱ)$(i)\because 2^{k-1}\leqslant n\leqslant 2^{k}-1$,$\therefore 2^{k}\leqslant 2n\leqslant 2^{k+1}-2$,$1+2^{k}\leqslant 2n+1\leqslant 2^{k+1}-1$, 即$1+2^{k}\leqslant a_{n}\leqslant 2^{k+1}-1$, 当$k\geqslant 2$时,$\because b_{k} < a_{n} < b_{k+1}$. $\therefore b_{k} < 1+2^{k}$,且$b_{k+1} > 2^{k+1}-1$, 即$b_{k} > 2^{k}-1$, 综上$2^{k}-1 < b_{k} < 1+2^{k}$, 即$2^{k}-1 < b_{n} < 2^{k}+1$成立. $(ii)\because 2^{k}-1 < b_{k} < 2^{k}+1$成立, $\because \{b_{n}\}$为等比数列,$\therefore$设公比为$q$, 当$k\geqslant 2$时,$2^{k+1}-1 < b_{k+1} < 2^{k+1}+1$,$\dfrac{1}{{2}^{k}+1} < \dfrac{1}{{b}_{k}} < \dfrac{1}{{2}^{k}-1}$, 则$\dfrac{{2}^{k+1}-1}{{2}^{k}+1} < \dfrac{{b}_{k+1}}{{b}_{k}} < \dfrac{{2}^{k+1}+1}{{2}^{k}-1}$, 即$\dfrac{2({2}^{k}+1)-1}{{2}^{k}+1} < \dfrac{{b}_{k+1}}{{b}_{k}} < \dfrac{2({2}^{k}-1)+3}{{2}^{k}-1}$, 即$2-\dfrac{1}{{2}^{k}+1} < q < 2+\dfrac{3}{{2}^{k}-1}$, 当$k\rightarrow +\infty$,$2-\dfrac{1}{{2}^{k}+1}\rightarrow 2$,$2+\dfrac{3}{{2}^{k}-1}\rightarrow 2$, $\therefore q=2$, $\because k\geqslant 2$时,$2^{k}-1 < b_{k} < 2^{k}+1$, $\therefore 2^{k}-1 < b_{1}2$$^{k-1} < 2^{k}+1$, 即$\dfrac{{2}^{k}-1}{{2}^{k-1}} < b_{1} < \dfrac{{2}^{k}+1}{{2}^{k-1}}$, 即$2-\dfrac{1}{{2}^{k-1}} < b_{1} < 2+\dfrac{1}{{2}^{k-1}}$, 当$k\rightarrow +\infty$,$2-\dfrac{1}{{2}^{k-1}}\rightarrow 2$,$2+\dfrac{1}{{2}^{k-1}}\rightarrow 2$, 则$b_{1}=2$, 则$b_{n}=2\times 2^{n-1}=2^{n}$,即$\{b_{n}\}$的通项公式为$b_{n}=2^{n}$, 则$\{b_{n}\}$的其前$n$项和$T_{n}=\dfrac{2(1-{2}^{n})}{1-2}=2^{n+1}-2$. 点评:本题主要考查等比数列和等差数列的通项公式以及求和公式的应用,利用方程组法以及数列的递推关系进行求解是解决本题的关键,是中档题.
|