(12分)如图,在三棱锥$P-ABC$中,$AB\bot BC$,$AB=2$,$BC=2\sqrt{2}$,$PB=PC=\sqrt{6}$,$AD=\sqrt{5}DO$,$BP$,$AP$,$BC$的中点分别为$D$,$E$,$O$,点$F$在$AC$上,$BF\bot AO$. (1)证明:$EF//$平面$ADO$; (2)证明:平面$ADO\bot$平面$BEF$; (3)求二面角$D-AO-C$的正弦值.
答案:(1)见解析;(2)见解析;(3)$\dfrac{\sqrt{2}}{2}$. 分析:(1)利用限量法可得$OF//AB$,$OF=\dfrac{1}{2}AB$,四边形$ODEF$为平行四边形,根据线面平行的判定定理即可证明; (2)由勾股定理可得$AO\bot OD$,$AO\bot EF$,根据面面垂直的判定定理即可证明; (3)设二面角$D-AO-C$的平面角为$\theta$,可知$\theta$为$\overrightarrow{OD}$和$\overrightarrow{BF}$的夹角,利用向量的夹角公式求解即可. 证明:(1)由题可知,$\vert \overrightarrow{AC}\vert =2\sqrt{3}$,设$\overrightarrow{AF}=\lambda \overrightarrow{AC}$, $\because$$\overrightarrow{AB}\cdot \overrightarrow{AC}=\vert \overrightarrow{AB}\vert \vert \overrightarrow{AC}\vert \cos \angle BAC=4$, 则$\overrightarrow{BF}\cdot \overrightarrow{AO}=(\lambda \overrightarrow{AC}-\overrightarrow{AB})\cdot (\dfrac{1}{2}\overrightarrow{AB}+\dfrac{1}{2}\overrightarrow{AC})=\dfrac{\lambda }{2}\vert \overrightarrow{AC}{\vert }^{2}-\dfrac{1}{2}\vert \overrightarrow{AB}{\vert }^{2}+(\dfrac{1}{2}\lambda -\dfrac{1}{2})\overrightarrow{AB}\cdot \overrightarrow{AC}=8\lambda -4=0$,解得$\lambda =\dfrac{1}{2}$, $\therefore OF//AB$,$OF=\dfrac{1}{2}AB$, 而$DE//AB$,$DE=\dfrac{1}{2}AB$,$\therefore DE//OF$,$DE=OF$,$\therefore$四边形$ODEF$为平行四边形, $\therefore EF//OD$, $\because OD\subset$平面$ADO$,$EF\not\subset$平面$ADO$, $\therefore EF//$平面$ADO$. 证明:(2)$AO=\sqrt{A{B}^{2}+O{B}^{2}}=\sqrt{6}=PC=2OD$,$AD=\sqrt{5}OD$, $\therefore AD^{2}=AO^{2}+OD^{2}$,即$AO\bot OD$,$AO\bot EF$, $\because BF\bot AO$,$BF\bigcap EF=F$, $\therefore AO\bot$平面$BEF$, $\because AO\subset$平面$ADO$, $\therefore$平面$ADO\bot$平面$BEF$. 解:(3)设二面角$D-AO-C$的平面角为$\theta$, $\because AO\bot OD$,$AO\bot BF$, $\therefore \theta$为$\overrightarrow{OD}$和$\overrightarrow{BF}$的夹角, $\vert \overrightarrow{BF}\vert =\dfrac{1}{2}\vert \overrightarrow{AC}\vert =\sqrt{3}$,$\vert \overrightarrow{OD}\vert =\dfrac{1}{2}\vert \overrightarrow{PC}\vert =\dfrac{\sqrt{6}}{2}$, $\cos \theta =\dfrac{\overrightarrow{BF}\cdot \overrightarrow{OD}}{\vert \overrightarrow{BF}\vert \vert \overrightarrow{OD}\vert }=\dfrac{\dfrac{1}{2}(\overrightarrow{OA}-3\overrightarrow{OB})\cdot \overrightarrow{OD}}{\vert \overrightarrow{BF}\vert \vert \overrightarrow{OD}\vert }=\dfrac{-\dfrac{3}{2}\overrightarrow{OB}\cdot \overrightarrow{OD}}{\vert \overrightarrow{BF}\vert \vert \overrightarrow{OD}\vert }=\dfrac{-\dfrac{3}{2}}{\sqrt{3}\times \dfrac{\sqrt{6}}{2}}=-\dfrac{\sqrt{2}}{2}$, $\sin \theta =\dfrac{\sqrt{2}}{2}$, $\therefore$二面角$D-AO-C$的正弦值为$\dfrac{\sqrt{2}}{2}$. 点评:本题考查直线与平面、平面与平面位置关系的判定定理,考查二面角的计算,是难题.
|