2023年高考数学乙卷-理18 |
|
2023-07-08 11:45:03 |
|
(12分)在$\Delta ABC$中,已知$\angle BAC=120^\circ$,$AB=2$,$AC=1$. (1)求$\sin \angle ABC$; (2)若$D$为$BC$上一点.且$\angle BAD=90^\circ$,求$\Delta ADC$的面积. 答案:(1)$\dfrac{\sqrt{21}}{14}$; (2)$\dfrac{\sqrt{3}}{10}$. 分析:(1)由余弦定理可求$BC$,进而可求$\sin \angle ABC$; (2)由已知可求$\tan \angle ABC$,进而可得$AD$,可求面积. 解:(1)
在$\Delta ABC$中,由余弦定理可知$BC^{2}=2^{2}+1^{2}-2\times 1\times 2\times \cos 120^\circ =7$, $BC=\sqrt{7}$,$\therefore$由余弦定理可得$\cos \angle ABC=\dfrac{7+4-1}{2\times \sqrt{7}\times 2}=\dfrac{5\sqrt{7}}{14}$, 又$\angle ABC\in (0^\circ ,60^\circ )$,$\therefore \sin \angle ABC=\sqrt{1-co{s}^{2}\angle ABC}=\sqrt{1-\dfrac{25}{28}}=\dfrac{\sqrt{21}}{14}$,
(2)由(1)知:$\cos \angle ABC=\dfrac{5\sqrt{7}}{14}$,$\sin \angle ABC=\dfrac{\sqrt{21}}{14}$, $\therefore \tan \angle ABC=\dfrac{\sqrt{3}}{5}$,$\therefore$$\dfrac{1}{2}AD=\dfrac{\sqrt{3}}{5}$,$\therefore AD=\dfrac{2\sqrt{3}}{5}$, $\therefore \Delta ADC$的面积为$\dfrac{1}{2}\times AD\times AC\times \sin \angle DAC=\dfrac{1}{2}\times \dfrac{2\sqrt{3}}{5}\times 1\times \dfrac{1}{2}=\dfrac{\sqrt{3}}{10}$. 点评:本题考查余弦定理的应用,考查三角形面积的计算,属基础题.
|
|
http://x.91apu.com//shuxue/gkt/2023/2023qgyl/2023-07-08/33726.html |