91学 首页 > 数学 > 高考题 > 2023 > 2023年全国乙理 > 正文 返回 打印

2023年高考数学乙卷-理18

  2023-07-08 11:45:03  

(12分)在$\Delta ABC$中,已知$\angle BAC=120^\circ$,$AB=2$,$AC=1$.
(1)求$\sin \angle ABC$;
(2)若$D$为$BC$上一点.且$\angle BAD=90^\circ$,求$\Delta ADC$的面积.
答案:(1)$\dfrac{\sqrt{21}}{14}$;
(2)$\dfrac{\sqrt{3}}{10}$.
分析:(1)由余弦定理可求$BC$,进而可求$\sin \angle ABC$;
(2)由已知可求$\tan \angle ABC$,进而可得$AD$,可求面积.
解:(1)

在$\Delta ABC$中,由余弦定理可知$BC^{2}=2^{2}+1^{2}-2\times 1\times 2\times \cos 120^\circ =7$,
$BC=\sqrt{7}$,$\therefore$由余弦定理可得$\cos \angle ABC=\dfrac{7+4-1}{2\times \sqrt{7}\times 2}=\dfrac{5\sqrt{7}}{14}$,
又$\angle ABC\in (0^\circ ,60^\circ )$,$\therefore \sin \angle ABC=\sqrt{1-co{s}^{2}\angle ABC}=\sqrt{1-\dfrac{25}{28}}=\dfrac{\sqrt{21}}{14}$,

(2)由(1)知:$\cos \angle ABC=\dfrac{5\sqrt{7}}{14}$,$\sin \angle ABC=\dfrac{\sqrt{21}}{14}$,
$\therefore \tan \angle ABC=\dfrac{\sqrt{3}}{5}$,$\therefore$$\dfrac{1}{2}AD=\dfrac{\sqrt{3}}{5}$,$\therefore AD=\dfrac{2\sqrt{3}}{5}$,
$\therefore \Delta ADC$的面积为$\dfrac{1}{2}\times AD\times AC\times \sin \angle DAC=\dfrac{1}{2}\times \dfrac{2\sqrt{3}}{5}\times 1\times \dfrac{1}{2}=\dfrac{\sqrt{3}}{10}$.
点评:本题考查余弦定理的应用,考查三角形面积的计算,属基础题.

http://x.91apu.com//shuxue/gkt/2023/2023qgyl/2023-07-08/33726.html