(5分)已知$\{a_{n}\}$为等比数列,$a_{2}a_{4}a_{5}=a_{3}a_{6}$,$a_{9}a_{10}=-8$,则$a_{7}=$____. 答案:$-2$. 分析:根据等比数列的性质即可求解. 解:$\because$等比数列$\{a_{n}\}$, $\therefore a_{2}a_{4}a_{5}=a_{2}a_{3}a_{6}=a_{3}a_{6}$,解得$a_{2}=1$, 而$a_{9}a_{10}=a_{2}q^{7}a_{2}q^{8}=(a_{2})^{2}q^{15}=-8$,可得$q^{15}=(q^{5})^{3}=-8$, 即$q^{5}=-2$, $a_{7}=a_{2}\cdot q^{5}=1\times (-2)=-2$. 故答案为:$-2$. 点评:本题考查等比数列的性质,是基础题.
|