2023年高考数学甲卷-文20 |
|
2023-07-08 11:37:07 |
|
(12分)已知函数$f(x)=ax-\dfrac{\sin x}{co{s^2}x}$,$x\in (0,\dfrac{\pi }{2})$. (1)当$a=1$时,讨论$f(x)$的单调性; (2)若$f(x)+\sin x < 0$,求$a$的取值范围. 答案:(1)$\therefore f(x)$在$(0,\dfrac{\pi }{2})$上单调递减;(2)$(-\infty$,$0]$. 分析:(1)先求导函数,再判断导函数的符号,即可求解; (2)设$g(x)=f(x)+\sin x=ax-\dfrac{\sin x}{co{s}^{2}x}+\sin x$,$x\in (0,\dfrac{\pi }{2})$,利用其二阶导函数的符号可得一阶导函数在$(0,\dfrac{\pi }{2})$上单调递减,再根据$g(x)=f(x)+\sin x < 0$及$g(0)$,可得$g\prime (0)=a-1+1\leqslant 0$,再分类讨论验证,即可求解. 解:(1)当$a=1$时,$f(x)=x-\dfrac{\sin x}{co{s}^{2}x}$,$x\in (0,\dfrac{\pi }{2})$, $\therefore f\prime (x)=1-\dfrac{\cos xco{s}^{2}x-2\cos x(-\sin x)\sin x}{co{s}^{4}x}$ $=1-\dfrac{co{s}^{2}x+2si{n}^{2}x}{co{s}^{3}x}=\dfrac{co{s}^{3}x+co{s}^{2}x-2}{co{s}^{3}x}$, 令$t=\cos x$,$\because$$x\in (0,\dfrac{\pi }{2})$,$\therefore t\in (0,1)$, $\therefore \cos ^{3}x+\cos ^{2}x-2=t^{3}+t^{2}-2$ $=(t-1)(t^{2}+2t+2)=(t-1)[(t+1)^{2}+1] < 0$, 又$\cos ^{3}x=t^{3} > 0$, $\therefore f\prime (x)=\dfrac{co{s}^{3}x+co{s}^{2}x-2}{co{s}^{3}x}=\dfrac{(t-1)({t}^{2}+2t+2)}{{t}^{3}} < 0$, $\therefore f(x)$在$(0,\dfrac{\pi }{2})$上单调递减; (2)设$g(x)=f(x)+\sin x=ax-\dfrac{\sin x}{co{s}^{2}x}+\sin x$,$x\in (0,\dfrac{\pi }{2})$, 则$g\prime (x)=a-\dfrac{1+si{n}^{2}x}{co{s}^{3}x}+\cos x$,$x\in (0,\dfrac{\pi }{2})$, $g\prime \prime (x)=-\dfrac{2\sin xco{s}^{4}x+3(1+si{n}^{2}x)co{s}^{2}x\sin x}{co{s}^{6}x}-\sin x < 0$, $\therefore g\prime (x)$在$(0,\dfrac{\pi }{2})$上单调递减, 若$g(x)=f(x)+\sin x < 0$,又$g(0)=0$,则$g\prime (0)=a-1+1\leqslant 0$,$\therefore a\leqslant 0$, 当$a=0$时,$\because$$\sin x-\dfrac{\sin x}{co{s}^{2}x}=\sin x(1-\dfrac{1}{co{s}^{2}x})$, 又$x\in (0,\dfrac{\pi }{2})$,$\therefore 0 < \sin x < 1$,$0 < \cos x < 1$,$\therefore$$\dfrac{1}{co{s}^{2}x} > 1$, $\therefore$$f(x)+\sin x=\sin x-\dfrac{\sin x}{co{s}^{2}x} < 0$,满足题意; 当$a < 0$时,$\because x\in (0,\dfrac{\pi }{2})$,$\therefore ax < 0$, $\therefore f(x)+\sin x=ax-\dfrac{\sin x}{co{s}^{2}x}+\sin x < \sin x < \sin x-\dfrac{\sin x}{co{s}^{2}x} < 0$,满足题意; 综合可得:若$f(x)+\sin x < 0$,则$a\leqslant 0$, 所以$a$的取值范围为$(-\infty$,$0]$. 点评:本题考查导数的综合应用,利用导数研究函数的单调性,化归转化思想,属难题.
|
|
http://x.91apu.com//shuxue/gkt/2023/2023qgjw/2023-07-08/33705.html |