91学 首页 > 数学 > 高考题 > 2023 > 2023年全国甲文 > 正文 返回 打印

2023年高考数学甲卷-文11

  2023-07-08 11:34:33  

(5分)已知函数$f(x)={e^{-{{(x-1)}^2}}}$.记$a=f(\dfrac{\sqrt{2}}{2})$,$b=f(\dfrac{\sqrt{3}}{2})$,$c=f(\dfrac{\sqrt{6}}{2})$,则$($  $)$
A.$b > c > a$              B.$b > a > c$              C.$c > b > a$              D.$c > a > b$
答案:$A$
分析:令$g(x)=-(x-1)^{2}$,先利用作差比较法及一元二次函数的性质,可得$g(\dfrac{\sqrt{2}}{2}) < g(\dfrac{\sqrt{6}}{2}) < g(\dfrac{\sqrt{3}}{2})$,再根据$y=e^{x}$的单调性,即可求解.
解:令$g(x)=-(x-1)^{2}$,则$g(x)$的开口向下,对称轴为$x=1$,
$\because$$\dfrac{\sqrt{6}}{2}-1-(1-\dfrac{\sqrt{3}}{2})=\dfrac{\sqrt{6}+\sqrt{3}}{2}-\dfrac{4}{2}$,
而$(\sqrt{6}+\sqrt{3})^{2}-{4}^{2}=9+6\sqrt{2}-16=6\sqrt{2}-7 > 0$,
$\therefore$$\dfrac{\sqrt{6}}{2}-1-(1-\dfrac{\sqrt{3}}{2})=\dfrac{\sqrt{6}+\sqrt{3}-4}{2} > 0$,
$\therefore$$\dfrac{\sqrt{6}}{2}-1 > 1-\dfrac{\sqrt{3}}{2}$,
$\therefore$由一元二次函数的性质可知$g(\dfrac{\sqrt{6}}{2}) < g(\dfrac{\sqrt{3}}{2})$,
$\because$$\dfrac{\sqrt{6}}{2}-1-(1-\dfrac{\sqrt{2}}{2})=\dfrac{\sqrt{6}+\sqrt{2}-4}{2}$,
而$(\sqrt{6}+\sqrt{2})^{2}-{4}^{2}=4\sqrt{3}-8 < 0$,
$\therefore$$\dfrac{\sqrt{6}}{2}-1 < 1-\dfrac{\sqrt{2}}{2}$,$\therefore$$g(\dfrac{\sqrt{6}}{2}) > g(\dfrac{\sqrt{2}}{2})$,
综合可得$g(\dfrac{\sqrt{2}}{2}) < g(\dfrac{\sqrt{6}}{2}) < g(\dfrac{\sqrt{3}}{2})$,又$y=e^{x}$为增函数,
$\therefore a < c < b$,即$b > c > a$.
故选:$A$.
点评:本题考查利用函数的单调性比较大小,作差比较法的应用,化归转化思想,属中档题.

http://x.91apu.com//shuxue/gkt/2023/2023qgjw/2023-07-08/33696.html