(12分)在三棱柱$ABC-A_{1}B_{1}C_{1}$中,$AA_{1}=2$,$A_{1}C\bot$底面$ABC$,$\angle ACB=90^\circ$,$A_{1}$到平面$BCC_{1}B_{1}$的距离为1. (1)求证:$AC=A_{1}C$; (2)若直线$AA_{1}$与$BB_{1}$距离为2,求$AB_{1}$与平面$BCC_{1}B_{1}$所成角的正弦值.
答案:(1)证明见解答; (2)$AB_{1}$与平面$BCC_{1}B_{1}$所成角的正弦值为$\dfrac{\sqrt{13}}{13}$. 分析:(1)取$CC_{1}$的中点,连接$A_{1}O$,可证平面$BCC_{1}B_{1}\bot$平面$A_{1}C_{1}CA$,可得$A_{1}$到$CC_{1}$的距离为1,进而可得$A_{1}O\bot CC_{1}$,可证结论; (2)过$A$作$AM//A_{1}O$交$C_{1}C$的延长线与$M$,连接$MB_{1}$,取$BB_{1}$的中点$N$,连接$ON$,可证$A_{1}N$为直线$AA_{1}$与$BB_{1}$距离,进而可得$\angle AB_{1}M$为$AB_{1}$与平面$BCC_{1}B_{1}$所成角的角,求解即可. 解:(1)方法一:证明:取$CC_{1}$的中点$O$,连接$A_{1}O$, $\because A_{1}C\bot$底面$ABC$,$AC\subset$底面$ABC$, $\therefore A_{1}C\bot AC$,$\therefore A_{1}C\bot A_{1}C_{1}$,$\therefore A_{1}O=\dfrac{1}{2}C_{1}C=1$, $\because A_{1}$到平面$BCC_{1}B_{1}$的距离为1,点$O\in$平面$BCC_{1}B_{1}$,且$A_{1}O=1$, $\therefore A_{1}O\bot BCC_{1}B_{1}$, $\therefore A_{1}O\bot CC_{1}$, $\because O$为$CC_{1}$的中点, $\therefore A_{1}C=A_{1}C_{1}=AC$, $\therefore AC=A_{1}C$; 方法二:证明:取$CC_{1}$的中点$O$,连接$A_{1}O$, $\because A_{1}C\bot$底面$ABC$,$AC\subset$底面$ABC$, $\therefore A_{1}C\bot AC$,$\therefore A_{1}C\bot A_{1}C_{1}$,$\therefore A_{1}O=\dfrac{1}{2}C_{1}C=1$, $\because A_{1}C\bot$底面$ABC$,$BC\subset$底面$ABC$, $\therefore A_{1}C\bot BC$,$\because \angle ACB=90^\circ$,$\therefore AC\bot BC$, $\because A_{1}C\bigcap AC=C$,$\therefore BC\bot$平面$A_{1}C_{1}CA$, $\because BC\subset$平面$BCC_{1}B_{1}$,$\therefore$平面$BCC_{1}B_{1}\bot$平面$A_{1}C_{1}CA$, $\because A_{1}$到平面$BCC_{1}B_{1}$的距离为1, $\therefore A_{1}$到$CC_{1}$的距离为1, $\therefore A_{1}O\bot CC_{1}$, $\because O$为$CC_{1}$的中点, $\therefore A_{1}C=A_{1}C_{1}=AC$, $\therefore AC=A_{1}C$; (2)过$A$作$AM//A_{1}O$交$C_{1}C$的延长线与$M$,连接$MB_{1}$, 取$BB_{1}$的中点$N$,连接$ON$,
$\therefore$四边形$BCON$为平行四边形, $\therefore ON\bot$平面$A_{1}C_{1}CA$, $A_{1}O\bigcap ON=O$,$\therefore CC_{1}\bot$平面$A_{1}ON$, $\because A_{1}N\subset$平面$A_{1}ON$, $\therefore CC_{1}\bot A_{1}N$, $\therefore AA_{1}\bot A_{1}N$, $\therefore A_{1}N$为直线$AA_{1}$与$BB_{1}$距离, $\therefore A_{1}N=2$,$\therefore ON=\sqrt{3}$, 由(1)可知$AM\bot$平面$BCC_{1}B_{1}$, $\therefore \angle AB_{1}M$为$AB_{1}$与平面$BCC_{1}B_{1}$所成角的角, 易求得$C_{1}M=3$, $\therefore B_{1}M=\sqrt{9+3}=2\sqrt{3}$, $\because A_{1}M=1$,$\therefore AB_{1}=\sqrt{1+12}=\sqrt{13}$, $\therefore \sin \angle AB_{1}M=\dfrac{1}{\sqrt{13}}=\dfrac{\sqrt{13}}{13}$. $\therefore AB_{1}$与平面$BCC_{1}B_{1}$所成角的正弦值为$\dfrac{\sqrt{13}}{13}$. 点评:本题考查线线相等的证明,考查线面角的求法,属中档题.
|