Processing math: 100%
91学 首页 > 数学 > 高考题 > 2023 > 2023年全国甲理 > 正文 返回 打印

2023年高考数学甲卷-理18

  2023-07-08 11:28:27  

(12分)在三棱柱ABCA1B1C1中,AA1=2A1C底面ABCACB=90A1到平面BCC1B1的距离为1.
(1)求证:AC=A1C
(2)若直线AA1BB1距离为2,求AB1与平面BCC1B1所成角的正弦值.

答案:(1)证明见解答;
(2)AB1与平面BCC1B1所成角的正弦值为1313
分析:(1)取CC1的中点,连接A1O,可证平面BCC1B1平面A1C1CA,可得A1CC1的距离为1,进而可得A1OCC1,可证结论;
(2)过AAM//A1OC1C的延长线与M,连接MB1,取BB1的中点N,连接ON,可证A1N为直线AA1BB1距离,进而可得AB1MAB1与平面BCC1B1所成角的角,求解即可.
解:(1)方法一:证明:取CC1的中点O,连接A1O
A1C底面ABCAC底面ABC
A1CACA1CA1C1A1O=12C1C=1
A1到平面BCC1B1的距离为1,点O平面BCC1B1,且A1O=1
A1OBCC1B1
A1OCC1
OCC1的中点,
A1C=A1C1=AC
AC=A1C
方法二:证明:取CC1的中点O,连接A1O
A1C底面ABCAC底面ABC
A1CACA1CA1C1A1O=12C1C=1
A1C底面ABCBC底面ABC
A1CBCACB=90ACBC
A1CAC=CBC平面A1C1CA
BC平面BCC1B1平面BCC1B1平面A1C1CA
A1到平面BCC1B1的距离为1,
A1CC1的距离为1,
A1OCC1
OCC1的中点,
A1C=A1C1=AC
AC=A1C
(2)过AAM//A1OC1C的延长线与M,连接MB1
BB1的中点N,连接ON

四边形BCON为平行四边形,
ON平面A1C1CA
A1OON=OCC1平面A1ON
A1N平面A1ON
CC1A1N
AA1A1N
A1N为直线AA1BB1距离,
A1N=2ON=3
由(1)可知AM平面BCC1B1
AB1MAB1与平面BCC1B1所成角的角,
易求得C1M=3
B1M=9+3=23
A1M=1AB1=1+12=13
sinAB1M=113=1313
AB1与平面BCC1B1所成角的正弦值为1313
点评:本题考查线线相等的证明,考查线面角的求法,属中档题.

http://x.91apu.com//shuxue/gkt/2023/2023qgjl/2023-07-08/33680.html