(12分)在三棱柱ABC−A1B1C1中,AA1=2,A1C⊥底面ABC,∠ACB=90∘,A1到平面BCC1B1的距离为1. (1)求证:AC=A1C; (2)若直线AA1与BB1距离为2,求AB1与平面BCC1B1所成角的正弦值.
 答案:(1)证明见解答; (2)AB1与平面BCC1B1所成角的正弦值为√1313. 分析:(1)取CC1的中点,连接A1O,可证平面BCC1B1⊥平面A1C1CA,可得A1到CC1的距离为1,进而可得A1O⊥CC1,可证结论; (2)过A作AM//A1O交C1C的延长线与M,连接MB1,取BB1的中点N,连接ON,可证A1N为直线AA1与BB1距离,进而可得∠AB1M为AB1与平面BCC1B1所成角的角,求解即可. 解:(1)方法一:证明:取CC1的中点O,连接A1O, ∵A1C⊥底面ABC,AC⊂底面ABC, ∴A1C⊥AC,∴A1C⊥A1C1,∴A1O=12C1C=1, ∵A1到平面BCC1B1的距离为1,点O∈平面BCC1B1,且A1O=1, ∴A1O⊥BCC1B1, ∴A1O⊥CC1, ∵O为CC1的中点, ∴A1C=A1C1=AC, ∴AC=A1C; 方法二:证明:取CC1的中点O,连接A1O, ∵A1C⊥底面ABC,AC⊂底面ABC, ∴A1C⊥AC,∴A1C⊥A1C1,∴A1O=12C1C=1, ∵A1C⊥底面ABC,BC⊂底面ABC, ∴A1C⊥BC,∵∠ACB=90∘,∴AC⊥BC, ∵A1C⋂AC=C,∴BC⊥平面A1C1CA, ∵BC⊂平面BCC1B1,∴平面BCC1B1⊥平面A1C1CA, ∵A1到平面BCC1B1的距离为1, ∴A1到CC1的距离为1, ∴A1O⊥CC1, ∵O为CC1的中点, ∴A1C=A1C1=AC, ∴AC=A1C; (2)过A作AM//A1O交C1C的延长线与M,连接MB1, 取BB1的中点N,连接ON,
 ∴四边形BCON为平行四边形, ∴ON⊥平面A1C1CA, A1O⋂ON=O,∴CC1⊥平面A1ON, ∵A1N⊂平面A1ON, ∴CC1⊥A1N, ∴AA1⊥A1N, ∴A1N为直线AA1与BB1距离, ∴A1N=2,∴ON=√3, 由(1)可知AM⊥平面BCC1B1, ∴∠AB1M为AB1与平面BCC1B1所成角的角, 易求得C1M=3, ∴B1M=√9+3=2√3, ∵A1M=1,∴AB1=√1+12=√13, ∴sin∠AB1M=1√13=√1313. ∴AB1与平面BCC1B1所成角的正弦值为√1313. 点评:本题考查线线相等的证明,考查线面角的求法,属中档题.
|