91学 首页 > 数学 > 高考题 > 2023 > 2023年全国甲理 > 正文 返回 打印

2023年高考数学甲卷-理18

  2023-07-08 11:28:27  

(12分)在三棱柱$ABC-A_{1}B_{1}C_{1}$中,$AA_{1}=2$,$A_{1}C\bot$底面$ABC$,$\angle ACB=90^\circ$,$A_{1}$到平面$BCC_{1}B_{1}$的距离为1.
(1)求证:$AC=A_{1}C$;
(2)若直线$AA_{1}$与$BB_{1}$距离为2,求$AB_{1}$与平面$BCC_{1}B_{1}$所成角的正弦值.

答案:(1)证明见解答;
(2)$AB_{1}$与平面$BCC_{1}B_{1}$所成角的正弦值为$\dfrac{\sqrt{13}}{13}$.
分析:(1)取$CC_{1}$的中点,连接$A_{1}O$,可证平面$BCC_{1}B_{1}\bot$平面$A_{1}C_{1}CA$,可得$A_{1}$到$CC_{1}$的距离为1,进而可得$A_{1}O\bot CC_{1}$,可证结论;
(2)过$A$作$AM//A_{1}O$交$C_{1}C$的延长线与$M$,连接$MB_{1}$,取$BB_{1}$的中点$N$,连接$ON$,可证$A_{1}N$为直线$AA_{1}$与$BB_{1}$距离,进而可得$\angle AB_{1}M$为$AB_{1}$与平面$BCC_{1}B_{1}$所成角的角,求解即可.
解:(1)方法一:证明:取$CC_{1}$的中点$O$,连接$A_{1}O$,
$\because A_{1}C\bot$底面$ABC$,$AC\subset$底面$ABC$,
$\therefore A_{1}C\bot AC$,$\therefore A_{1}C\bot A_{1}C_{1}$,$\therefore A_{1}O=\dfrac{1}{2}C_{1}C=1$,
$\because A_{1}$到平面$BCC_{1}B_{1}$的距离为1,点$O\in$平面$BCC_{1}B_{1}$,且$A_{1}O=1$,
$\therefore A_{1}O\bot BCC_{1}B_{1}$,
$\therefore A_{1}O\bot CC_{1}$,
$\because O$为$CC_{1}$的中点,
$\therefore A_{1}C=A_{1}C_{1}=AC$,
$\therefore AC=A_{1}C$;
方法二:证明:取$CC_{1}$的中点$O$,连接$A_{1}O$,
$\because A_{1}C\bot$底面$ABC$,$AC\subset$底面$ABC$,
$\therefore A_{1}C\bot AC$,$\therefore A_{1}C\bot A_{1}C_{1}$,$\therefore A_{1}O=\dfrac{1}{2}C_{1}C=1$,
$\because A_{1}C\bot$底面$ABC$,$BC\subset$底面$ABC$,
$\therefore A_{1}C\bot BC$,$\because \angle ACB=90^\circ$,$\therefore AC\bot BC$,
$\because A_{1}C\bigcap AC=C$,$\therefore BC\bot$平面$A_{1}C_{1}CA$,
$\because BC\subset$平面$BCC_{1}B_{1}$,$\therefore$平面$BCC_{1}B_{1}\bot$平面$A_{1}C_{1}CA$,
$\because A_{1}$到平面$BCC_{1}B_{1}$的距离为1,
$\therefore A_{1}$到$CC_{1}$的距离为1,
$\therefore A_{1}O\bot CC_{1}$,
$\because O$为$CC_{1}$的中点,
$\therefore A_{1}C=A_{1}C_{1}=AC$,
$\therefore AC=A_{1}C$;
(2)过$A$作$AM//A_{1}O$交$C_{1}C$的延长线与$M$,连接$MB_{1}$,
取$BB_{1}$的中点$N$,连接$ON$,

$\therefore$四边形$BCON$为平行四边形,
$\therefore ON\bot$平面$A_{1}C_{1}CA$,
$A_{1}O\bigcap ON=O$,$\therefore CC_{1}\bot$平面$A_{1}ON$,
$\because A_{1}N\subset$平面$A_{1}ON$,
$\therefore CC_{1}\bot A_{1}N$,
$\therefore AA_{1}\bot A_{1}N$,
$\therefore A_{1}N$为直线$AA_{1}$与$BB_{1}$距离,
$\therefore A_{1}N=2$,$\therefore ON=\sqrt{3}$,
由(1)可知$AM\bot$平面$BCC_{1}B_{1}$,
$\therefore \angle AB_{1}M$为$AB_{1}$与平面$BCC_{1}B_{1}$所成角的角,
易求得$C_{1}M=3$,
$\therefore B_{1}M=\sqrt{9+3}=2\sqrt{3}$,
$\because A_{1}M=1$,$\therefore AB_{1}=\sqrt{1+12}=\sqrt{13}$,
$\therefore \sin \angle AB_{1}M=\dfrac{1}{\sqrt{13}}=\dfrac{\sqrt{13}}{13}$.
$\therefore AB_{1}$与平面$BCC_{1}B_{1}$所成角的正弦值为$\dfrac{\sqrt{13}}{13}$.
点评:本题考查线线相等的证明,考查线面角的求法,属中档题.

http://x.91apu.com//shuxue/gkt/2023/2023qgjl/2023-07-08/33680.html