(12分)已知数列$\{a_{n}\}$中,$a_{2}=1$,设$S_{n}$为$\{a_{n}\}$前$n$项和,$2S_{n}=na_{n}$. (1)求$\{a_{n}\}$的通项公式; (2)求数列$\{\dfrac{{a}_{n}+1}{{2}^{n}}\}$的前$n$项和$T_{n}$. 答案:(1)$\{a_{n}\}$的通项公式为$a_{n}=n-1$; (2)$T_{n}=2-\dfrac{n+2}{{2}^{n}}$. 分析:(1)求得$a_{1}=0$,进而可得当$n\geqslant 3$时,可得$\dfrac{{a}_{n}}{{a}_{n-1}}=\dfrac{n-1}{n-2}$,由累乘法可求$\{a_{n}\}$的通项公式; (2)$\dfrac{{a}_{n}+1}{{2}^{n}}=\dfrac{n}{{2}^{n}}$,利用错位相减法可求数列$\{\dfrac{{a}_{n}+1}{{2}^{n}}\}$的前$n$项和$T_{n}$. 解:(1)当$n=1$时,$2S_{1}=a_{1}$,解得$a_{1}=0$, 当$n\geqslant 2$时,$2S_{n-1}=(n-1)a_{n-1}$, $\therefore 2a_{n}=na_{n}-(n-1)a_{n-1}$,$\therefore (n-1)a_{n-1}=(n-2)a_{n}$, 当$n\geqslant 3$时,可得$\dfrac{{a}_{n}}{{a}_{n-1}}=\dfrac{n-1}{n-2}$, $\therefore a_{n}=\dfrac{2}{1}\times \dfrac{3}{2}\times \dfrac{4}{3}\times \dotsb \times \dfrac{n-1}{n-2}\times a_{2}=n-1$, 当$n=2$或$n=1$时,$a_{1}=0$,$a_{2}=1$适合上式, $\therefore \{a_{n}\}$的通项公式为$a_{n}=n-1$; (2)由(1)可得$\dfrac{{a}_{n}+1}{{2}^{n}}=\dfrac{n}{{2}^{n}}$, $\therefore T_{n}=\dfrac{1}{2}+\dfrac{2}{{2}^{2}}+\dfrac{3}{{2}^{3}}+\dotsb +\dfrac{n}{{2}^{n}}$,$\therefore$$\dfrac{1}{2}T_{n}=\dfrac{1}{{2}^{2}}+\dfrac{2}{{2}^{3}}+\dfrac{3}{{2}^{4}}+\dotsb +\dfrac{n}{{2}^{n+1}}$, $\therefore$$\dfrac{1}{2}T_{n}=\dfrac{1}{2}+\dfrac{1}{{2}^{2}}+\dfrac{1}{{2}^{3}}+\dotsb +\dfrac{1}{{2}^{n}}-\dfrac{n}{{2}^{n+1}}=\dfrac{\dfrac{1}{2}(1-\dfrac{1}{{2}^{n}})}{1-\dfrac{1}{2}}-\dfrac{n}{{2}^{n+1}}=1-\dfrac{1}{{2}^{n}}-\dfrac{n}{{2}^{n+1}}$, $\therefore T_{n}=2-\dfrac{n+2}{{2}^{n}}$. 点评:本题考查求数列的通项公式,考查数列的前$n$项的和的求法,属中档题.
|