(5分)已知椭圆$\dfrac{{x}^{2}}{9}+\dfrac{{y}^{2}}{6}=1$,$F_{1}$,$F_{2}$为两个焦点,$O$为原点,$P$为椭圆上一点,$\cos \angle F_{1}PF_{2}=\dfrac{3}{5}$,则$\vert PO\vert =($ $)$ A.$\dfrac{2}{5}$ B.$\dfrac{\sqrt{30}}{2}$ C.$\dfrac{3}{5}$ D.$\dfrac{\sqrt{35}}{2}$ 答案:$B$ 分析:利用椭圆的定义,结合余弦定理,通过向量的模,然后转化求解即可. 解:椭圆$\dfrac{{x}^{2}}{9}+\dfrac{{y}^{2}}{6}=1$,$F_{1}$,$F_{2}$为两个焦点,$c=\sqrt{3}$, $O$为原点,$P$为椭圆上一点,$\cos \angle {F}_{1}P{F}_{2}=\dfrac{3}{5}$, 设$\vert PF_{1}\vert =m$,$\vert PF_{2}\vert =n$,不妨$m > n$, 可得$m+n=6$,$4c^{2}=m^{2}+n^{2}-2mn\cos \angle F_{1}PF_{2}$,即$12=m^{2}+n^{2}-\dfrac{6}{5}mn$,可得$mn=\dfrac{15}{2}$,$m^{2}+n^{2}=21$, $\overrightarrow{PO}=\dfrac{1}{2}(\overrightarrow{P{F}_{1}}+\overrightarrow{P{F}_{2}})$, 可得$\vert PO\vert ^{2}=\dfrac{1}{4}({\overrightarrow{P{F}_{1}}}^{2}+{\overrightarrow{P{F}_{2}}}^{2}+2\overrightarrow{P{F}_{1}}\cdot \overrightarrow{P{F}_{2}})$ $=\dfrac{1}{4}(m^{2}+n^{2}+2mn\cos \angle F_{1}PF_{2})$ $=\dfrac{1}{4}(m^{2}+n^{2}+\dfrac{6}{5}mn)$ $=\dfrac{1}{4}(21+\dfrac{6}{5}\times \dfrac{15}{2})=\dfrac{15}{2}$. 可得$\vert PO\vert =\dfrac{\sqrt{30}}{2}$. 故选:$B$. 点评:本题考查椭圆的简单性质的应用,向量的数量积以及余弦定理的应用,是中档题.
|