2023年高考数学甲卷-理11 |
|
2023-07-08 11:26:15 |
|
(5分)在四棱锥$P-ABCD$中,底面$ABCD$为正方形,$AB=4$,$PC=PD=3$,$\angle PCA=45^\circ$,则$\Delta PBC$的面积为$($ $)$ A.$2\sqrt{2}$ B.$3\sqrt{2}$ C.$4\sqrt{2}$ D.$5\sqrt{2}$ 答案:$C$ 分析:解法一:先根据对称性易知$\angle PDB=\angle PCA=45^\circ$,再根据余弦定理求出$PB$,然后用余弦定理求$\Delta PBC$的一个角的余弦值,从而得该角的正弦值,最后代入三角形面积公式,即可得解. 解法二:设$P$在底面的射影为$H$,连接$HC$,设$\angle PCH=\theta$,$\angle ACH=\alpha$,且$\alpha \in (0,\dfrac{\pi }{2})$,则$\angle HCD=45^\circ -\alpha$,或$\angle HCD=45^\circ +\alpha$,易知$\cos \angle PCD=\dfrac{2}{3}$,又$\angle PCA=45^\circ$,再根据最小角定理及三角形面积公式,即可求解. 解:解法一:$\because$四棱锥$P-ABCD$中,底面$ABCD$为正方形, 又$PC=PD=3$,$\angle PCA=45^\circ$, $\therefore$根据对称性易知$\angle PDB=\angle PCA=45^\circ$, 又底面正方形$ABCD$得边长为4,$\therefore BD=4\sqrt{2}$, $\therefore$在$\Delta PBD$中,根据余弦定理可得: $PB=\sqrt{(4\sqrt{2})^{2}+{3}^{2}-2\times 4\sqrt{2}\times 3\times \dfrac{\sqrt{2}}{2}}=\sqrt{17}$, 又$BC=4$,$PC=3$,$\therefore$在$\Delta PBC$中,由余弦定理可得: $\cos \angle PCB=\dfrac{16+9-17}{2\times 4\times 3}=\dfrac{1}{3}$,$\therefore \sin \angle PCB=\dfrac{2\sqrt{2}}{3}$, $\therefore \Delta PBC$的面积为$\dfrac{1}{2}\times BC\times PC\times \sin \angle PCB=\dfrac{1}{2}\times 4\times 3\times \dfrac{2\sqrt{2}}{3}=4\sqrt{2}$. 解法二:如图,设$P$在底面的射影为$H$,连接$HC$,
设$\angle PCH=\theta$,$\angle ACH=\alpha$,且$\alpha \in (0,\dfrac{\pi }{2})$, 则$\angle HCD=45^\circ -\alpha$,或$\angle HCD=45^\circ +\alpha$, 易知$\cos \angle PCD=\dfrac{2}{3}$,又$\angle PCA=45^\circ$, 则根据最小角定理(三余弦定理)可得: $\left\{\begin{array}{l}{\cos \angle PCA=\cos \theta \cos \alpha }\\ {\cos \angle PCD=\cos \theta \cos \angle HCD}\end{array}\right.$, $\therefore$$\left\{\begin{array}{l}{\dfrac{\sqrt{2}}{2}=\cos \theta \cos \alpha }\\ {\dfrac{2}{3}=\cos \theta \cos (45^\circ -\alpha )}\end{array}\right.$或$\left\{\begin{array}{l}{\dfrac{\sqrt{2}}{2}=\cos \theta \cos \alpha }\\ {\dfrac{2}{3}=\cos \theta \cos (45^\circ +\alpha )}\end{array}\right.$, $\therefore$$\dfrac{\cos (45^\circ -\alpha )}{\cos \alpha }=\dfrac{2\sqrt{2}}{3}$或$\dfrac{\cos (45^\circ +\alpha )}{\cos \alpha }=\dfrac{2\sqrt{2}}{3}$, $\therefore$$\dfrac{\cos \alpha +\sin \alpha }{\cos \alpha }=\dfrac{4}{3}$或$\dfrac{\cos \alpha -\sin \alpha }{\cos \alpha }=\dfrac{4}{3}$, $\therefore \tan \alpha =\dfrac{1}{3}$或$\tan \alpha =-\dfrac{1}{3}$,又$\alpha \in (0,\dfrac{\pi }{2})$, $\therefore \tan \alpha =\dfrac{1}{3}$,$\therefore \cos \alpha =\dfrac{3}{\sqrt{10}}$,$\sin \alpha =\dfrac{1}{\sqrt{10}}$, $\therefore$$\dfrac{\sqrt{2}}{2}=\dfrac{3}{\sqrt{10}}\cos \theta$,$\therefore \cos \theta =\dfrac{\sqrt{5}}{3}$, 再根据最小角定理可得: $\cos \angle PCB=\cos \theta \cos (45^\circ +\alpha )=\dfrac{\sqrt{5}}{3}\times \dfrac{\sqrt{2}}{2}(\dfrac{3}{\sqrt{10}}-\dfrac{1}{\sqrt{10}})=\dfrac{1}{3}$, $\therefore \sin \angle PCB=\dfrac{2\sqrt{2}}{3}$,又$BC=4$,$PC=3$, $\therefore \Delta PBC$的面积为$\dfrac{1}{2}\times BC\times PC\times \sin \angle PCB=\dfrac{1}{2}\times 4\times 3\times \dfrac{2\sqrt{2}}{3}=4\sqrt{2}$. 故选:$C$. 点评:本题考查三角形面积的求解,余弦定理的应用,三角形面积公式的应用,最小角定理的应用,化归转化思想,属中档题.
|
|
http://x.91apu.com//shuxue/gkt/2023/2023qgjl/2023-07-08/33673.html |