2022年高考数学上海春21 |
|
2022-12-16 20:53:37 |
|
(18分)已知函数f(x)的定义域为R,现有两种对f(x)变换的操作:φ变换:f(x)−f(x−t);ω变换:|f(x+t)−f(x)|,其中t为大于0的常数. (1)设f(x)=2x,t=1,g(x)为f(x)做φ变换后的结果,解方程:g(x)=2; (2)设f(x)=x2,h(x)为f(x)做ω变换后的结果,解不等式:f(x)⩾h(x); (3)设f(x)在(−∞,0)上单调递增,f(x)先做φ变换后得到u(x),u(x)再做ω变换后得到h1(x);f(x)先做ω变换后得到v(x),v(x)再做φ变换后得到h2(x).若h1(x)=h2(x)恒成立,证明:函数f(x)在R上单调递增. 分析:(1)推导出g(x)=f(x)−f(x−1)=2x−2x−1=2x−1=2,由此能求出x. (2)推导出x2⩾|(x+t)2−x2|=|2tx+t2|,当x⩽−t2时,f(x)⩾h(x)恒成立;当x>−t2时,2tx+t2⩽x2,由此能求出f(x)⩾h(x)的解集. (3)先求出u(x)=f(x)−f(x−t),从而h1(x)=|f(x+t)−f(x)−[f(x)−f(x−t)]|,先求出v(x)=|f(x+t)−f(x)|,从而h2(x)=|f(x+t)−f(x)|−|f(x)−f(x−t)|,由h1(x)=h2(x),得|f(x+t)−f(x)−[f(x)−f(x−t)]|=|f(x+t)−f(x)|−|f(x)−f(x−t)|,再由f(x)在(−∞,0)上单调递增,能证明函数f(x)在R上单调递增. 解:(1)∵,t=1,g(x)为f(x)做\varphi变换后的结果,g(x)=2, \therefore g(x)=f(x)-f(x-1)=2^{x}-2^{x-1}=2^{x-1}=2, 解得x=2. (2)\because f(x)=x^{2},h(x)为f(x)做\omega变换后的结果,f(x)\geqslant h(x), \therefore x^{2}\geqslant \vert (x+t)^{2}-x^{2}\vert =\vert 2tx+t^{2}\vert, 当x\leqslant -\dfrac{t}{2}时,f(x)\geqslant h(x)恒成立; 当x > -\dfrac{t}{2}时,2tx+t^{2}\leqslant x^{2}, 解得x\geqslant (1+\sqrt{2})t,或x\leqslant (1-\sqrt{2})t, 综上,不等式:f(x)\geqslant h(x)的解集为(-\infty,(1-\sqrt{2})t]\bigcup{[}(1+\sqrt{2})t,+\infty ). (3)证明:f(x)先做\varphi变换后得到u(x),u(x)再做\omega变换后得到h_{1}(x), \therefore u(x)=f(x)-f(x-t),h_{1}(x)=\vert f(x+t)-f(x)-[f(x)-f(x-t)]\vert, f(x)先做\omega变换后得到v(x),v(x)再做\varphi变换后得到h_{2}(x), \therefore v(x)=\vert f(x+t)-f(x)\vert,h_{2}(x)=\vert f(x+t)-f(x)\vert -\vert f(x)-f(x-t)\vert, \because h_{1}(x)=h_{2}(x),f(x)在(-\infty ,0)上单调递增, \therefore \vert f(x+t)-f(x)-[f(x)-f(x-t)]\vert =\vert f(x+t)-f(x)\vert -\vert f(x)-f(x-t)\vert, \because t > 0,\therefore\left\{\begin{array}{l}{f(x+t)-f(t) > f(t)-f(t-1)}\\ {f(x+t)-f(x) > 0}\\ {f(x) > f(x-t)}\end{array}\right., \therefore函数f(x)在R上单调递增. 点评:本题考查方程、不等式的解的求法,考查函数是增函数的证明,考查函数变换的性质、抽象函数性质等基础知识,考查运算求解能力,是中档题.
|
|
http://x.91apu.com//shuxue/gkt/2022/2022shc/2022-12-16/33618.html |