Loading [MathJax]/jax/element/mml/optable/SuppMathOperators.js
91学 首页 > 数学 > 高考题 > 2022 > 2022年上海春 > 正文 返回 打印

2022年高考数学上海春18

  2022-12-16 20:50:43  

(14分)已知在数列{an}中,a2=1,其前n项和为Sn
(1)若{an}是等比数列,S2=3,求limnSn
(2)若{an}是等差数列,S2n,求其公差d的取值范围.
分析:(1)由已知求得等比数列的公比,再求出前n项和,求极限得答案;
(2)求出等差数列的前2n项和,代入S_{2n}\geqslant n,对n分类分析得答案.
解:(1)在等比数列\{a_{n}\}中,a_{2}=1S_{2}=3,则a_{1}=2
\therefore公比q=\dfrac{1}{2},则{S}_{n}=\dfrac{{a}_{1}(1-{q}^{n})}{1-q}=4(1-\dfrac{1}{{2}^{n}})
\therefore\mathop{\lim}\limits_{n\rightarrow \infty }S_{n}=\lim\limits_{n\rightarrow \infty }4(1-\dfrac{1}{{2}^{n}})=4
(2)若\{a_{n}\}是等差数列,
{S}_{2n}=\dfrac{({a}_{2}+{a}_{2n-1})\cdot 2n}{2}=2d{n}^{2}+(2-3d)n\geqslant n
(3-2n)d\leqslant 1,当n=1时,d\leqslant 1
n\geqslant 2时,d\geqslant \dfrac{1}{3-2n}恒成立,\because\dfrac{1}{3-2n}\in [-10)\therefore d\geqslant 0
综上所述,d\in [01]
点评:本题考查等差数列与等比数列前n项和,考查数列极限的求法,考查数列的函数特性及应用,是中档题.

http://x.91apu.com//shuxue/gkt/2022/2022shc/2022-12-16/33615.html