(14分)已知在数列{an}中,a2=1,其前n项和为Sn. (1)若{an}是等比数列,S2=3,求limn→∞Sn; (2)若{an}是等差数列,S2n⩾,求其公差d的取值范围. 分析:(1)由已知求得等比数列的公比,再求出前n项和,求极限得答案; (2)求出等差数列的前2n项和,代入S_{2n}\geqslant n,对n分类分析得答案. 解:(1)在等比数列\{a_{n}\}中,a_{2}=1,S_{2}=3,则a_{1}=2, \therefore公比q=\dfrac{1}{2},则{S}_{n}=\dfrac{{a}_{1}(1-{q}^{n})}{1-q}=4(1-\dfrac{1}{{2}^{n}}), \therefore\mathop{\lim}\limits_{n\rightarrow \infty }S_{n}=\lim\limits_{n\rightarrow \infty }4(1-\dfrac{1}{{2}^{n}})=4; (2)若\{a_{n}\}是等差数列, 则{S}_{2n}=\dfrac{({a}_{2}+{a}_{2n-1})\cdot 2n}{2}=2d{n}^{2}+(2-3d)n\geqslant n, 即(3-2n)d\leqslant 1,当n=1时,d\leqslant 1; 当n\geqslant 2时,d\geqslant \dfrac{1}{3-2n}恒成立,\because\dfrac{1}{3-2n}\in [-1,0),\therefore d\geqslant 0. 综上所述,d\in [0,1]. 点评:本题考查等差数列与等比数列前n项和,考查数列极限的求法,考查数列的函数特性及应用,是中档题.
|