(6分)现有7张卡片,分别写上数字1,2,2,3,4,5,6.从这7张卡片中随机抽取3张,记所抽取卡片上数字的最小值为$\xi$,则$P(\xi =2)=$ $\dfrac{16}{35}$ ,$E(\xi )=$ . 分析:根据组合数公式,古典概型的概率公式,离散型随机变量的均值定义即可求解. 解:根据题意可得:$\xi$的取值可为1,2,3,4, 又$P(\xi =1)=\dfrac{{C}_{6}^{2}}{{C}_{7}^{3}}=\dfrac{3}{7}$, $P(\xi =2)=\dfrac{{C}_{2}^{1}\cdot {C}_{4}^{2}+{C}_{2}^{2}\cdot {C}_{4}^{1}}{{C}_{7}^{3}}=\dfrac{16}{35}$, $P(\xi =3)=\dfrac{{C}_{3}^{2}}{{C}_{7}^{3}}=\dfrac{3}{35}$, $P(\xi =4)=\dfrac{{C}_{2}^{2}}{{C}_{7}^{3}}=\dfrac{1}{35}$, $\therefore E(\xi )=1\times \dfrac{3}{7}+2\times \dfrac{16}{35}+3\times \dfrac{3}{35}+4\times \dfrac{1}{35}=\dfrac{12}{7}$, 故答案为:$\dfrac{16}{35}$;$\dfrac{12}{7}$. 点评:本题考查组合数公式,古典概型的概率公式,离散型随机变量的均值定义,属基础题.
|