2022年高考数学浙江14 |
|
2022-12-16 20:48:15 |
|
(6分)已知函数$f(x)=\left\{\begin{array}{l}{-{x^2}+2,x\leqslant 1,}\\ {x+\dfrac{1}{x}-1,x > 1,}\end{array}\right.$则$f(f(\dfrac{1}{2}))=$ $\dfrac{37}{28}$ ;若当$x\in [a$,$b]$时,$1\leqslant f(x)\leqslant 3$,则$b-a$的最大值是 . 分析:直接由分段函数解析式求$f(f(\dfrac{1}{2}))$;画出函数$f(x)$的图象,数形结合得答案. 解:$\because$函数$f(x)=\left\{\begin{array}{l}{-{x}^{2}+2,x\leqslant 1}\\ {x+\dfrac{1}{x}-1,x > 1}\end{array}\right.$,$\therefore f(\dfrac{1}{2})=-\dfrac{1}{4}+2=\dfrac{7}{4}$, $\therefore f(f(\dfrac{1}{2}))=f(\dfrac{7}{4})=\dfrac{7}{4}+\dfrac{4}{7}-1=\dfrac{37}{28}$; 作出函数$f(x)$的图象如图:
由图可知,若当$x\in [a$,$b]$时,$1\leqslant f(x)\leqslant 3$,则$b-a$的最大值是$2+\sqrt{3}-(-1)=3+\sqrt{3}$. 故答案为:$\dfrac{37}{28}$;$3+\sqrt{3}$. 点评:本题考查函数值的求法,考查分段函数的应用,考查数形结合思想,是中档题.
|
|
http://x.91apu.com//shuxue/gkt/2022/2022zj/2022-12-16/33589.html |