(6分)若$3\sin \alpha -\sin \beta =\sqrt{10}$,$\alpha +\beta =\dfrac{\pi }{2}$,则$\sin \alpha =$ $\dfrac{3\sqrt{10}}{10}$ ,$\cos 2\beta =$ . 分析:由诱导公式求出$3\sin \alpha -\cos \alpha =\sqrt{10}$,再由同角三角函数关系式推导出$\sin \alpha =\dfrac{3\sqrt{10}}{10}$,由此能求出$\cos 2\beta$的值. 解:$\because 3\sin \alpha -\sin \beta =\sqrt{10}$,$\alpha +\beta =\dfrac{\pi }{2}$, $\therefore 3\sin \alpha -\cos \alpha =\sqrt{10}$, $\therefore \cos \alpha =3\sin \alpha -\sqrt{10}$, $\because \sin ^{2}\alpha +\cos ^{2}\alpha =1$, $\therefore \sin ^{2}\alpha +(3\sin \alpha -\sqrt{10})^{2}=1$, 解得$\sin \alpha =\dfrac{3\sqrt{10}}{10}$,$\cos \beta =\sin \alpha =\dfrac{3\sqrt{10}}{10}$, $\cos 2\beta =2\cos ^{2}\beta -1=2\times \dfrac{90}{100}-1=\dfrac{4}{5}$. 故答案为:$\dfrac{3\sqrt{10}}{10}$;$\dfrac{4}{5}$. 点评:本题考查三角函数值的求法,考查诱导公式、同角三角函数关系式、二倍角公式等基础知识,考查运算求解能力,是基础题.
|