91学 首页 > 数学 > 高考题 > 2022 > 2022年浙江 > 正文 返回 打印

2022年高考数学浙江13

  2022-12-16 20:48:08  

(6分)若$3\sin \alpha -\sin \beta =\sqrt{10}$,$\alpha +\beta =\dfrac{\pi }{2}$,则$\sin \alpha =$ $\dfrac{3\sqrt{10}}{10}$ ,$\cos 2\beta =$  .
分析:由诱导公式求出$3\sin \alpha -\cos \alpha =\sqrt{10}$,再由同角三角函数关系式推导出$\sin \alpha =\dfrac{3\sqrt{10}}{10}$,由此能求出$\cos 2\beta$的值.
解:$\because 3\sin \alpha -\sin \beta =\sqrt{10}$,$\alpha +\beta =\dfrac{\pi }{2}$,
$\therefore 3\sin \alpha -\cos \alpha =\sqrt{10}$,
$\therefore \cos \alpha =3\sin \alpha -\sqrt{10}$,
$\because \sin ^{2}\alpha +\cos ^{2}\alpha =1$,
$\therefore \sin ^{2}\alpha +(3\sin \alpha -\sqrt{10})^{2}=1$,
解得$\sin \alpha =\dfrac{3\sqrt{10}}{10}$,$\cos \beta =\sin \alpha =\dfrac{3\sqrt{10}}{10}$,
$\cos 2\beta =2\cos ^{2}\beta -1=2\times \dfrac{90}{100}-1=\dfrac{4}{5}$.
故答案为:$\dfrac{3\sqrt{10}}{10}$;$\dfrac{4}{5}$.
点评:本题考查三角函数值的求法,考查诱导公式、同角三角函数关系式、二倍角公式等基础知识,考查运算求解能力,是基础题.

http://x.91apu.com//shuxue/gkt/2022/2022zj/2022-12-16/33588.html