(4分)已知数列{an}满足a1=1,an+1=an−13a2n(n∈N∗),则( ) A.2<100a100<52 B.52<100a100<3 C.3<100a100<72 D.72<100a100<4 分析:分析可知数列{an}是单调递减数列,根据题意先确定上限,得到an⩽3n+2,由此可推得100an<3,再将原式变形确定下限,可得1an+1⩽13n+13(12+13+……+1n+1)+1,由此可推得100a100>52,综合即可得到答案. 解:∵an+1−an=−13a2n<0, ∴{an}为递减数列, 又an+1=an−13an2⩽23,且an≠0, ∴an+1an=1−13an⩾23>0, 又a1=1>0,则an>0, ∴an−an+1=13an2⩾13anan+1, ∴1an+1−1an⩾13, ∴1an⩾1a1+13(n−1)=13n+23,则an⩽3n+2, ∴100a100⩽100×3102<306102=3; 由an+1=an−13an2得an+1=an(1−13an),得1an+1−1an=13−an⩽13−3n+2=13(1+1n+1), 累加可得,1an+1⩽13n+13(12+13+……+1n+1)+1, ∴1a100⩽34+13×(12+13+……+1100)<34+13×(12×6+18×93)<40, ∴100a100>100×140=52; 综上,52<100a100<3. 故选:B. 点评:本题考查递推数列,数列的单调性等知识,对化简变形能力要求较高,考查运算求解能力,逻辑推理能力,属于难题.
|