(4分)如图,已知正三棱柱$ABC-A_{1}B_{1}C_{1}$,$AC=AA_{1}$,$E$,$F$分别是棱$BC$,$A_{1}C_{1}$上的点.记$EF$与$AA_{1}$所成的角为$\alpha$,$EF$与平面$ABC$所成的角为$\beta$,二面角$F-BC-A$的平面角为$\gamma$,则( )
A.$\alpha \leqslant \beta \leqslant \gamma$ B.$\beta \leqslant \alpha \leqslant \gamma$ C.$\beta \leqslant \gamma \leqslant \alpha$ D.$\alpha \leqslant \gamma \leqslant \beta$ 分析:根据线线角的定义,线面角的定义,面面角的定义,转化即可求解. 解:$\because$正三棱柱$ABC-A_{1}B_{1}C_{1}$中,$AC=AA_{1}$, $\therefore$正三棱柱的所有棱长相等,设棱长为1,
如图,过$F$作$FG\bot AC$,垂足点为$G$,连接$GE$,则$A_{1}A//FG$, $\therefore EF$与$AA_{1}$所成的角为$\angle EFG=\alpha$,且$\tan \alpha =\dfrac{GE}{FG}=GE$, 又$GE\in [0$,$1]$,$\therefore \tan \alpha \in [0$,$1]$, $\therefore EF$与平面$ABC$所成的角为$\angle FEG=\beta$,且$\tan \beta =\dfrac{GF}{GE}=\dfrac{1}{GE}\in [1$,$+\infty )$, $\therefore \tan \beta \geqslant \tan \alpha$,$...$①, 再过$G$点作$GH\bot BC$,垂足点为$H$,连接$HF$, 又易知$FG\bot$底面$ABC$,$BC\subset$底面$ABC$, $\therefore BC\bot FG$,又$FG\bigcap GH=G$,$\therefore BC\bot$平面$GHF$, $\therefore$二面角$F-BC-A$的平面角为$\angle GHF=\gamma$,且$\tan \gamma =\dfrac{GF}{GH}=\dfrac{1}{GH}$,又$GH\in [0$,$1]$, $\therefore \tan \gamma \in [1$,$+\infty )$,$\therefore \tan \gamma \geqslant \tan \alpha$,$...$②, 又$GE\geqslant GH$,$\therefore \tan \beta \leqslant \tan \gamma$,$...$③, 由①②③得$\tan \alpha \leqslant \tan \beta \leqslant \tan \gamma$,又$\alpha$,$\beta$,$\gamma \in [0$,$\dfrac{\pi }{2})$,$y=\tan x$在$[0$,$\dfrac{\pi }{2})$单调递增, $\therefore \alpha \leqslant \beta \leqslant \gamma$, 故选:$A$.
点评:本题考查线线角的定义,线面角的定义,面面角的定义,考查了转化思想,属中档题.
|