(15分)椭圆$\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1(a > b > 0)$的右焦点为$F$、右顶点为$A$,上顶点为$B$,且满足$\dfrac{\vert {BF}\vert }{\vert {AB}\vert }=\dfrac{\sqrt{3}}{2}$. (1)求椭圆的离心率$e$; (2)直线$l$与椭圆有唯一公共点$M$,与$y$轴相交于$N(N$异于$M)$.记$O$为坐标原点,若$\vert OM\vert =\vert ON\vert$,且$\Delta OMN$的面积为$\sqrt{3}$,求椭圆的标准方程. 分析:(1)根据$\dfrac{\vert {BF}\vert }{\vert {AB}\vert }=\dfrac{\sqrt{3}}{2}$建立$a$,$b$的等式,再转化为$a$,$c$的等式,从而得离心率$e$的值; (2)先由(1)将椭圆方程转化为$x^{2}+3y^{2}=a^{2}$,再设直线$l$为$y=kx+m$,联立椭圆方程求出点$M$的坐标,再由△$=0$及$\vert OM\vert =\vert ON\vert$,且$\Delta OMN$的面积为$\sqrt{3}$建立方程组,再解方程组即可得解. 解:(1)$\because$$\dfrac{\vert {BF}\vert }{\vert {AB}\vert }=\dfrac{a}{\sqrt{{a}^{2}+{b}^{2}}}=\dfrac{\sqrt{3}}{2}$,$\therefore$$\dfrac{{a}^{2}}{{a}^{2}+{b}^{2}}=\dfrac{3}{4}$, $\therefore a^{2}=3b^{2}$, $\therefore a^{2}=3(a^{2}-c^{2})$,$\therefore 2a^{2}=3c^{2}$, $\therefore e=\sqrt{\dfrac{{c}^{2}}{{a}^{2}}}=\sqrt{\dfrac{2}{3}}=\dfrac{\sqrt{6}}{3}$; (2)由(1)可知椭圆为$\dfrac{{x}^{2}}{{a}^{2}}+\dfrac{{y}^{2}}{\dfrac{{a}^{2}}{3}}=1$, 即$x^{2}+3y^{2}=a^{2}$, 设直线$l:y=kx+m$,联立$x^{2}+3y^{2}=a^{2}$,消去$y$可得: $(3k^{2}+1)x^{2}+6kmx+(3m^{2}-a^{2})=0$,又直线$l$与椭圆只有一个公共点, $\therefore$△$=36k^{2}m^{2}-4(3k^{2}+1)(3m^{2}-a)=0$,$\therefore 3m^{2}=a^{2}(3k^{2}+1)$, 又${x}_{M}=\dfrac{-3km}{3{k}^{2}+1}$,$\therefore$${y}_{M}=k{x}_{M}+m=\dfrac{-3{k}^{2}m}{3{k}^{2}+1}+m=\dfrac{m}{3{k}^{2}+1}$, 又$\vert OM\vert =\vert ON\vert$,$\therefore$$(\dfrac{-3km}{3{k}^{2}+1})^{2}+(\dfrac{m}{3{k}^{2}+1})^{2}={m}^{2}$, 解得${k}^{2}=\dfrac{1}{3}$,$\therefore k=\pm \dfrac{\sqrt{3}}{3}$, 又$\Delta OMN$的面积为$\dfrac{1}{2}\cdot \vert ON\vert \cdot \vert {x}_{M}\vert =\dfrac{1}{2}\cdot \vert m\vert \cdot \vert \dfrac{-3km}{3{k}^{2}+1}\vert =\sqrt{3}$, $\therefore$$\dfrac{1}{2}\cdot \dfrac{\sqrt{3}{m}^{2}}{2}=\sqrt{3}$,$\therefore m^{2}=4$, 又$k=\dfrac{\sqrt{3}}{3}$,$3m^{2}=a^{2}(3k^{2}+1)$,$\therefore a^{2}=6$,$b^{2}=2$, $\therefore$椭圆的标准方程为$\dfrac{{x}^{2}}{6}+\dfrac{{y}^{2}}{2}=1$. 点评:本题考椭圆的性质,直线与椭圆相切的位置关系,方程思想,属中档题.
|