2022年高考数学天津16 |
|
2022-12-16 20:37:57 |
|
(15分)在$\Delta ABC$中,角$A$,$B$,$C$所对的边分别为$a$,$b$,$c$.已知$a=\sqrt{6}$,$b=2c$,$\cos A=-\dfrac{1}{4}$. (1)求$c$的值; (2)求$\sin$$B$的值; (3)求$\sin (2A-B)$的值. 分析:(1)由余弦定理及题中条件可得$c$边的值; (2)由正弦定理可得$\sin C$的值,再由$b=2c$及正弦定理可得$\sin B$的值; (3)求出$2A$及$B$角的正余弦值,由两角差的正弦公式可得$2A-B$的正弦值. 解(1)因为$a=\sqrt{6}$,$b=2c$,$\cos A=-\dfrac{1}{4}$, 由余弦定理可得$\cos A=\dfrac{{b}^{2}+{c}^{2}-{a}^{2}}{2bc}=\dfrac{4{c}^{2}+{c}^{2}-6}{4{c}^{2}}=-\dfrac{1}{4}$, 解得:$c=1$; (2)$\cos A=-\dfrac{1}{4}$,$A\in (0,\pi )$,所以$\sin A=\sqrt{1-co{s}^{2}A}=\dfrac{\sqrt{15}}{4}$, 由$b=2c$,可得$\sin B=2\sin C$, 由正弦定理可得$\dfrac{a}{\sin A}=\dfrac{c}{\sin C}$,即$\dfrac{\sqrt{6}}{\dfrac{\sqrt{15}}{4}}=\dfrac{1}{\sin C}$, 可得$\sin C=\dfrac{\sqrt{10}}{8}$, 所以$\sin B=2\sin C=2\times \dfrac{\sqrt{10}}{8}=\dfrac{\sqrt{10}}{4}$; (3)因为$\cos A=-\dfrac{1}{4}$,$\sin A=\dfrac{\sqrt{15}}{4}$, 所以$\sin 2A=2\sin A\cos A=2\times (-\dfrac{1}{4})\times \dfrac{\sqrt{15}}{4}=-\dfrac{\sqrt{15}}{8}$,$\cos 2A=2\cos ^{2}A-1=2\times \dfrac{1}{16}-1=-\dfrac{7}{8}$, $\sin B=\dfrac{\sqrt{10}}{4}$,可得$\cos B=\dfrac{\sqrt{6}}{4}$, 所以$\sin (2A-B)=\sin 2A\cos B-\cos 2A\sin B=-\dfrac{\sqrt{15}}{8}\times \dfrac{\sqrt{6}}{4}-(-\dfrac{7}{8})\times \dfrac{\sqrt{10}}{4}=\dfrac{\sqrt{10}}{8}$, 所以$\sin (2A-B)$的值为$\dfrac{\sqrt{10}}{8}$. 点评:本题考查正余弦定理及两角差的正弦公式的应用,属于基础题.
|
|
http://x.91apu.com//shuxue/gkt/2022/2022tj/2022-12-16/33571.html |