Loading [MathJax]/jax/element/mml/optable/MathOperators.js
91学 首页 > 数学 > 高考题 > 2022 > 2022年上海 > 正文 返回 打印

2022年高考数学上海21

  2022-12-16 20:34:06  

(18分)数列{an}对任意nNn2,均存在正整数i[1n1],满足an+1=2anaia1=1a2=3
(1)求a4可能值;
(2)命题p:若a1a2a8成等差数列,则a9<30,证明p为真,同时写出p逆命题q,并判断命题q是真是假,说明理由;
(3)若a2m=3m(mN)成立,求数列{an}的通项公式.
分析:(1)利用递推关系式可得a3=5,然后计算a4的值即可;
(2)由题意可得an=2n1(n[1,8],nN),则a9=2a8ai<30,从而命题为真命题,给出反例可得命题q为假命题.
(3)由题意可得a2m+2=2a2m+1ai(i2m)a2m+1=2a2maj(j2m1),然后利用数学归纳法证明数列单调递增,最后分类讨论即可确定数列的通项公式.
解:(1)a3=2a2a1=5a4=2a3a2=7a4=2a3a1=9
(2)a_{2}a_{3}a_{4}a_{5}a_{6}a_{7}a_{8}为等差数列,\therefore{d}=2,a_{n}=2{n}-1({n}\in [1,8],{n}\in {N}^{*})
a_{9}=2a_{8}-a_{i}=30-a_{i} < 30
逆命题q:若a_{9} < 30,则a_{1}a_{2}a_{3}a_{4}a_{5}a_{6}a_{7}a_{8}为等差数列是假命题,举例:
a_{1}=1a_{2}=3a_{3}=5a_{4}=7a_{5}=9a_{6}=11a_{7}=13a_{8}=2a_{7}-a_{5}=17a_{9}=2a_{8}-a_{7}=21
(3)因为a_{2m}=3^{m}
\thereforea_{2m+2}=3^{m+1},a_{2m+2}=2a_{2m+1}-a_{i}(i\leqslant 2m)a_{2m+1}=2a_{2m}-a_{j}(j\leqslant 2m-1)
\therefore a_{2m+2}=4a_{2m}-2a_{j}-a_{i}
\therefore2a_{j}+a_{i}=4a_{2m}-a_{2m+2}=4\times 3^{m}-3^{m+1}=3^{m}=a_{2m}
以下用数学归纳法证明数列单调递增,即证明a_{n+1} > a_{n}恒成立:
n=1a_{2} > a_{1}明显成立,
假设n=k时命题成立,即a_{k} > a_{k-1} > a_{k-1}\dotsb  >  > a_{2} > a_{1} > 0
a_{k+1}-a_{k}=2a_{k}-a_{i}-a_{k}=a_{k}-a_{i} > 0,则a_{k+1} > a_{k},命题得证.
回到原题,分类讨论求解数列的通项公式:
1.若j=2m-1,则a_{2m}=2a_{j}+a_{i}=2a_{2m-1}+a_{i} > a_{2m-1}-a_{i}矛盾,
2.若j=2m-2,则a_{j}=3^{m-1}\thereforea_{i}=3^{m}-2a_{j}=3^{m-1}\therefore i=2m-2
此时a_{2m+1}=2a_{2m}-a_{j}=2\times 3^{m}-3^{m-1}=5\times 3^{m-1}
\thereforea_{n}=\left\{\begin{array}{cc}{1}&{n=1}\\ {5\times 3^{\frac{n-3}{2}}}&{n=2k+1,k\in N^{*}}\\ {3^{\frac{n}{2}}}&{n=2k,k\in N^{*}}\end{array}\right.
3.若j < 2m-2,则2a_{j} < 2\times 3^{m-1}
\thereforea_{i}=3^{m}-2a_{j} > 3^{m-1}\therefore j=2m-1
\therefore a_{2m+2}=2a_{2m+1}-a_{2m-1}(由(2)知对任意m成立),
a_{6}=2a_{5}-a_{3}
事实上:a_{6}=2a_{5}-a_{2}矛盾.
综上可得a_{n}=\left\{\begin{array}{cc}{1}&{n=1}\\ {5\times 3^{\frac{n-3}{2}}}&{n=2k+1,k\in N^{*}}\\ {3^{\frac{n}{2}}}&{n=2k,k\in N^{*}}\end{array}\right.
点评:本题主要考查数列中的递推关系式,数列中的推理问题,数列通项公式的求解等知识,属于难题.

http://x.91apu.com//shuxue/gkt/2022/2022sh/2022-12-16/33555.html