2022年高考数学上海21 |
|
2022-12-16 20:34:06 |
|
(18分)数列{an}对任意n∈N∗且n⩾2,均存在正整数i∈[1,n−1],满足an+1=2an−ai,a1=1,a2=3. (1)求a4可能值; (2)命题p:若a1,a2,⋯,a8成等差数列,则a9<30,证明p为真,同时写出p逆命题q,并判断命题q是真是假,说明理由; (3)若a2m=3m,(m∈N∗)成立,求数列{an}的通项公式. 分析:(1)利用递推关系式可得a3=5,然后计算a4的值即可; (2)由题意可得an=2n−1(n∈[1,8],n∈N∗),则a9=2a8−ai<30,从而命题为真命题,给出反例可得命题q为假命题. (3)由题意可得a2m+2=2a2m+1−ai(i⩽2m),a2m+1=2a2m−aj(j⩽2m−1),然后利用数学归纳法证明数列单调递增,最后分类讨论即可确定数列的通项公式. 解:(1)a3=2a2−a1=5,a4=2a3−a2=7或a4=2a3−a1=9. (2)∵,a_{2},a_{3},a_{4},a_{5},a_{6},a_{7},a_{8}为等差数列,\therefore{d}=2,a_{n}=2{n}-1({n}\in [1,8],{n}\in {N}^{*}), a_{9}=2a_{8}-a_{i}=30-a_{i} < 30. 逆命题q:若a_{9} < 30,则a_{1},a_{2},a_{3},a_{4},a_{5},a_{6},a_{7},a_{8}为等差数列是假命题,举例: a_{1}=1,a_{2}=3,a_{3}=5,a_{4}=7,a_{5}=9,a_{6}=11,a_{7}=13,a_{8}=2a_{7}-a_{5}=17,a_{9}=2a_{8}-a_{7}=21. (3)因为a_{2m}=3^{m}, \thereforea_{2m+2}=3^{m+1},a_{2m+2}=2a_{2m+1}-a_{i}(i\leqslant 2m),a_{2m+1}=2a_{2m}-a_{j}(j\leqslant 2m-1), \therefore a_{2m+2}=4a_{2m}-2a_{j}-a_{i}, \therefore2a_{j}+a_{i}=4a_{2m}-a_{2m+2}=4\times 3^{m}-3^{m+1}=3^{m}=a_{2m}, 以下用数学归纳法证明数列单调递增,即证明a_{n+1} > a_{n}恒成立: 当n=1,a_{2} > a_{1}明显成立, 假设n=k时命题成立,即a_{k} > a_{k-1} > a_{k-1}\dotsb > > a_{2} > a_{1} > 0, 则a_{k+1}-a_{k}=2a_{k}-a_{i}-a_{k}=a_{k}-a_{i} > 0,则a_{k+1} > a_{k},命题得证. 回到原题,分类讨论求解数列的通项公式: 1.若j=2m-1,则a_{2m}=2a_{j}+a_{i}=2a_{2m-1}+a_{i} > a_{2m-1}-a_{i}矛盾, 2.若j=2m-2,则a_{j}=3^{m-1},\thereforea_{i}=3^{m}-2a_{j}=3^{m-1},\therefore i=2m-2, 此时a_{2m+1}=2a_{2m}-a_{j}=2\times 3^{m}-3^{m-1}=5\times 3^{m-1}, \thereforea_{n}=\left\{\begin{array}{cc}{1}&{n=1}\\ {5\times 3^{\frac{n-3}{2}}}&{n=2k+1,k\in N^{*}}\\ {3^{\frac{n}{2}}}&{n=2k,k\in N^{*}}\end{array}\right., 3.若j < 2m-2,则2a_{j} < 2\times 3^{m-1}, \thereforea_{i}=3^{m}-2a_{j} > 3^{m-1},\therefore j=2m-1, \therefore a_{2m+2}=2a_{2m+1}-a_{2m-1}(由(2)知对任意m成立), a_{6}=2a_{5}-a_{3}, 事实上:a_{6}=2a_{5}-a_{2}矛盾. 综上可得a_{n}=\left\{\begin{array}{cc}{1}&{n=1}\\ {5\times 3^{\frac{n-3}{2}}}&{n=2k+1,k\in N^{*}}\\ {3^{\frac{n}{2}}}&{n=2k,k\in N^{*}}\end{array}\right.. 点评:本题主要考查数列中的递推关系式,数列中的推理问题,数列通项公式的求解等知识,属于难题.
|
|
http://x.91apu.com//shuxue/gkt/2022/2022sh/2022-12-16/33555.html |