2022年高考数学上海20 |
|
2022-12-16 20:35:33 |
|
(16分)设有椭圆方程$\Gamma :\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1(a > b > 0)$,直线$l:x+y-4\sqrt{2}=0$,$\Gamma$下端点为$A$,$M$在$l$上,左、右焦点分别为$F_{1}(-\sqrt{2}$,$0)$、$F_{2}(\sqrt{2}$,$0)$. (1)$a=2$,$AM$中点在$x$轴上,求点$M$的坐标; (2)直线$l$与$y$轴交于$B$,直线$AM$经过右焦点$F_{2}$,在$\Delta ABM$中有一内角余弦值为$\dfrac{3}{5}$,求$b$; (3)在椭圆$\Gamma$上存在一点$P$到$l$距离为$d$,使$\vert PF_{1}\vert +\vert PF_{2}\vert +d=6$,随$a$的变化,求$d$的最小值.
分析:(1)由题意可得椭圆方程为$\dfrac{x^{2}}{4}+\dfrac{y^{2}}{2}=1$,从而确定$M$点的纵坐标,进一步可得点$M$的坐标; (2)由直线方程可知$B(0,4\sqrt{2})$,分类讨论$\cos \angle BAM=\dfrac{3}{5}$和$\cos \angle BMA=\dfrac{3}{5}$两种情况确定$b$的值即可; (3)设$P(a\cos \theta ,b\sin \theta )$,利用点到直线距离公式和椭圆的定义可得$\dfrac{\vert a\cos \theta +b\sin \theta -4\sqrt{2}\vert }{\sqrt{2}}=6-2a$,进一步整理计算,结合三角函数的有界性求得$1\leqslant a\leqslant \dfrac{5}{3}$即可确定$d$的最小值. 解:(1)由题意可得$a=2,b=c=\sqrt{2}$, $\Gamma :\dfrac{x^{2}}{4}+\dfrac{y^{2}}{2}=1,{\;A}(0,-\sqrt{2})$, $\because AM$的中点在$x$轴上, $\therefore M$的纵坐标为$\sqrt{2}$, 代入$x+y-4\sqrt{2}=0$得${M}(3\sqrt{2},\sqrt{2})$. (2)由直线方程可知$B(0,4\sqrt{2})$, ①若$\cos \angle BAM=\dfrac{3}{5}$,则$\tan \angle BAM=\dfrac{4}{3}$,即$\tan \angle OAF_{2}=\dfrac{4}{3}$, $\therefore$${OA}=\dfrac{3}{4}{OF}_{2}=\dfrac{3}{4}\sqrt{2}$, $\therefore$${b}=\dfrac{3}{4}\sqrt{2}$. ②若$\cos \angle BMA=\dfrac{3}{5}$,则$\sin \angle BMA=\dfrac{4}{5}$, $\because$$\angle MBA=\dfrac{\pi }{4}$,$\therefore$$\cos (\angle MBA+\angle AMB)=\dfrac{\sqrt{2}}{2}\times \dfrac{3}{5}-\dfrac{\sqrt{2}}{2}\times \dfrac{4}{5}=-\dfrac{\sqrt{2}}{10}$, $\therefore$$\cos \angle BAM=\dfrac{\sqrt{2}}{10}$,$\therefore \tan \angle BAM=7$. 即$\tan \angle OAF_{2}=7$,$\therefore$${OA}=\dfrac{\sqrt{2}}{7}$,$\therefore$$b=\dfrac{\sqrt{2}}{7}$, 综上${b}=\dfrac{3}{4}\sqrt{2}$或$\dfrac{\sqrt{2}}{7}$. (3)设$P(a\cos \theta ,b\sin \theta )$, 由点到直线距离公式可得$\dfrac{\vert a\cos \theta +b\sin \theta -4\sqrt{2}\vert }{\sqrt{2}}=6-2a$, 很明显椭圆在直线的左下方,则$-\dfrac{a\cos \theta +b\sin \theta -4\sqrt{2}}{\sqrt{2}}=6-2a$, 即$4\sqrt{2}-\sqrt{a^{2}+b^{2}}\sin (\theta +\varphi )=6\sqrt{2}-2\sqrt{2}a$, $\because a^{2}=b^{2}+2$,$\therefore$$\sqrt{2a^{2}-2}\sin (\theta +\varphi )=2\sqrt{2}a-2\sqrt{2}$, 据此可得$\sqrt{a^{2}-1}\sin (\theta +\varphi )=2a-2$,$\vert \sin (\theta +\varphi )\vert =\dfrac{\vert 2a-2\vert }{\sqrt{a^{2}-1}}\leqslant 1$, 整理可得$(a-1)(3a-5)\leqslant 0$,即$1\leqslant a\leqslant \dfrac{5}{3}$, 从而$d=6-2a\geqslant 6-2\times \dfrac{5}{3}=\dfrac{8}{3}$. 即$d$的最小值为$\dfrac{8}{3}$. 点评:本题主要考查椭圆方程的求解,点到直线距离公式及其应用,椭圆中的最值与范围问题等知识,属于中等题.
|
|
http://x.91apu.com//shuxue/gkt/2022/2022sh/2022-12-16/33554.html |