2022年高考数学上海8 |
|
2022-12-16 20:34:35 |
|
(5分)若函数$f(x)=\left\{\begin{array}{l}{{a}^{2}x-1}&{x < 0}\\ {x+a}&{x > 0}\\ {0}&{x=0}\end{array}\right.$,为奇函数,求参数$a$的值为 1 . 分析:由题意,利用奇函数的定义可得$f(-x)=-f(x)$,故有$f(-1)=-f$(1),由此求得$a$的值. 解:$\because$函数$f(x)=\left\{\begin{array}{l}{{a}^{2}x-1}&{x < 0}\\ {x+a}&{x > 0}\\ {0}&{x=0}\end{array}\right.$,为奇函数,$\therefore f(-x)=-f(x)$, $\therefore f(-1)=-f$(1),$\therefore -a^{2}-1=-(a+1)$,即$a(a-1)=0$,求得$a=0$或$a=1$. 当$a=0$时,$f(x)=\left\{\begin{array}{l}{-1,x < 0}\\ {0,x=0}\\ {x,x > 0}\end{array}\right.$,不是奇函数,故$a\ne 0$; 当$a=1$时,$f(x)=\left\{\begin{array}{l}{x-1,x < 0}\\ {0,x=0}\\ {x+1,x > 0}\end{array}\right.$,是奇函数,故满足条件, 综上,$a=1$, 故答案为:1. 点评:本题主要考查函数的奇偶性的定义和性质,属于中档题.
|
|
http://x.91apu.com//shuxue/gkt/2022/2022sh/2022-12-16/33542.html |