(4分)已知$a\in R$,行列式$\vert {\left.\begin{array}{l}a&1\\ 3&2\end{array}\right.}\vert$的值与行列式$\vert {\left.\begin{array}{l}a&0\\ 4&1\end{array}\right.}\vert$的值相等,则$a=$ 3 . 分析:根据行列式所表示的值求解即可. 解:因为$\vert {\left.\begin{array}{l}a&1\\ 3&2\end{array}\right.}\vert =2a-3$,$\vert {\left.\begin{array}{l}a&0\\ 4&1\end{array}\right.}\vert =a$, 所以$2a-3=a$,解得$a=3$. 故答案为:3. 点评:本题考查了行列式表示的值,属于基础题.
|