(13分)在$\Delta ABC$中,$\sin 2C=\sqrt{3}\sin C$. (Ⅰ)求$\angle C$; (Ⅱ)若$b=6$,且$\Delta ABC$的面积为$6\sqrt{3}$,求$\Delta ABC$的周长. 分析:(Ⅰ)根据二倍角公式化简可得$\cos C$,进一步计算可得角$C$;(Ⅱ)根据三角形面积求得$a$,再根据余弦定理求得$c$,相加可得三角形的周长. 解答:解:(Ⅰ)$\because \sin 2C=\sqrt{3}\sin C$, $\therefore 2\sin C\cos C=\sqrt{3}\sin C$, 又$\sin C\ne 0$,$\therefore 2\cos C=\sqrt{3}$, $\therefore \cos C=\dfrac{\sqrt{3}}{2}$,$\because 0 < C < \pi$, $\therefore C=\dfrac{\pi }{6}$; (Ⅱ)$\because \Delta ABC$的面积为$6\sqrt{3}$, $\therefore$$\dfrac{1}{2}ab\sin C=6\sqrt{3}$, 又$b=6$,$C=\dfrac{\pi }{6}$, $\therefore$$\dfrac{1}{2}\times a\times 6\times \dfrac{1}{2}=6\sqrt{3}$, $\therefore a=4\sqrt{3}$, 又$\cos C=\dfrac{{a}^{2}+{b}^{2}-{c}^{2}}{2ab}$, $\therefore$$\dfrac{\sqrt{3}}{2}=\dfrac{(4\sqrt{3})^{2}+{6}^{2}-{c}^{2}}{2\times 4\sqrt{3}\times 6}$, $\therefore c=2\sqrt{3}$, $\therefore a+b+c=6+6\sqrt{3}$, $\therefore \Delta ABC$的周长为$6+6\sqrt{3}$. 点评:本题考查了三角形面积公式和余弦定理的应用,属于中档题.
|