2022年高考数学北京5 |
|
2022-12-16 20:10:06 |
|
(4分)已知函数f(x)=cos2x−sin2x,则( ) A.f(x)在(−π2,−π6)上单调递减 B.f(x)在(−π4,π12)上单调递增 C.f(x)在(0,π3)上单调递减 D.f(x)在(π4,7π12)上单调递增 分析:利用二倍角公式化简得f(x)=cos2x,周期T=π,根据余弦函数的单调性可得f(x)的单调递减区间为[kπ,π2+kπ](k∈Z),单调递增区间为[π2+kπ,π+kπ](k∈Z),进而逐个判断各个选项的正误即可. 解答:解:f(x)=cos2x−sin2x=cos2x,周期T=π, ∴f(x)的单调递减区间为[kπ,π2+kπ](k∈Z),单调递增区间为[π2+kπ,π+kπ](k∈Z), 对于A,f(x)在(−π2,−π6)上单调递增,故A错误, 对于B,f(x)在(−π4,0)上单调递增,在(0,π12)上单调递减,故B错误, 对于C,f(x)在(0,π3)上单调递减,故C正确, 对于D,f(x)在(π4,π2)上单调递减,在(π2,7π12)上单调递增,故D错误, 故选:C. 点评:本题主要考查了二倍角公式,考查了余弦函数的单调性,属于基础题.
|
|
http://x.91apu.com//shuxue/gkt/2022/2022bj/2022-12-16/33518.html |