2022年高考数学乙卷-文21 |
|
2022-12-16 17:38:30 |
|
21.(12分)已知椭圆$E$的中心为坐标原点,对称轴为$x$轴、$y$轴,且过$A(0,-2)$,$B(\dfrac{3}{2}$,$-1)$两点. (1)求$E$的方程; (2)设过点$P(1,-2)$的直线交$E$于$M$,$N$两点,过$M$且平行于$x$轴的直线与线段$AB$交于点$T$,点$H$满足$\overrightarrow{MT}=\overrightarrow{TH}$.证明:直线$HN$过定点. 分析:(1)设$E$的方程为$mx^{2}+ny^{2}=1(m > 0$,$n > 0$且$m\ne n)$,将$A$,$B$两点坐标代入即可求解;(2)由$A(0,-2),B(\dfrac{3}{2},-1)$可得线段$AB:y=\dfrac{2}{3}x-2$,①若过$P(1,-2)$的直线的斜率不存在,直线为$x=1$,代入椭圆方程,根据$\overrightarrow{MT}=\overrightarrow{TH}$即可求解;②若过$P(1,-2)$的直线的斜率存在,设$kx-y-(k+2)=0$,$M(x_{1}$,$y_{1})$,$N(x_{2}$,$y_{2})$,联立$\left\{\begin{array}{l}kx-y-(k+2)=0\\ \dfrac{x^{2}}{3}+\dfrac{y^{2}}{4}=1\end{array}\right.$,得$(3k^{2}+4)x^{2}-6k(2+k)x+3k(k+4)=0$,结合韦达定理和已知条件即可求解. 解:(1)设$E$的方程为$mx^{2}+ny^{2}=1(m > 0$,$n > 0$且$m\ne n)$, 将$A(0,-2),B(\dfrac{3}{2},-1)$两点代入得$\left\{\begin{array}{l}{4n=1}\\ {\dfrac{9}{4}m+n=1}\end{array}\right.$, 解得$m=\dfrac{1}{3}$,$n=\dfrac{1}{4}$, 故$E$的方程为$\dfrac{x^{2}}{3}+\dfrac{y^{2}}{4}=1$; (2)由$A(0,-2),B(\dfrac{3}{2},-1)$可得线段$AB:y=\dfrac{2}{3}x-2$ (1)若过点$P(1,-2)$的直线斜率不存在,直线$x=1$.代入$\dfrac{x^{2}}{3}+\dfrac{y^{2}}{4}=1$, 可得$M(1,-\dfrac{2\sqrt{6}}{3})$,$N(1,\dfrac{2\sqrt{6}}{3})$,将$y=-\dfrac{2\sqrt{6}}{3}$代入$y=\dfrac{2}{3}x-2$,可得$T(-\sqrt{6}+3,-\dfrac{2\sqrt{6}}{3})$,得到$H(-2\sqrt{6}+5$,$-\dfrac{2\sqrt{6}}{3})$求得$HN$ 方程:$y=(2+\dfrac{2\sqrt{6}}{3})x-2$,过点$(0,-2)$. ②若过$P(1,-2)$的直线的斜率存在,设$kx-y-(k+2)=0$,$M(x_{1}$,$y_{1})$,$N(x_{2}$,$y_{2})$, 联立$\left\{\begin{array}{l}kx-y-(k+2)=0\\ \dfrac{x^{2}}{3}+\dfrac{y^{2}}{4}=1\end{array}\right.$,得$(3k^{2}+4)x^{2}-6k(2+k)x+3k(k+4)=0$, 故有$\left\{\begin{array}{l}x_{1}+x_{2}=\dfrac{6k(2+k)}{3k^{2}+4}\\ x_{1}x_{2}=\dfrac{3k(4+k)}{3k^{2}+4}\end{array}\right.$,$\left\{\begin{array}{l}y_{1}+y_{2}=\dfrac{-8(2+k)}{3k^{2}+4}\\ y_{1}y_{2}=\dfrac{4(4+4k-2k^{2})}{3k^{2}+4}\end{array}\right.$, $x_{1}y_{2}+x_{2}y_{1}=x_{1}(kx_{2}-k-2)+x_{2}(kx_{1}-k-2)$ $=kx_{1}x_{2}-kx_{1}-2x_{1}+kx_{1}x_{2}-kx_{2}-2x_{2}$ $=2kx_{1}x_{2}-(k+2)(x_{1}+x_{2})$ $=2k\cdot \dfrac{3k(4+k)}{3{k}^{2}+4}-(k+2)\cdot \dfrac{6k(2+k)}{3{k}^{2}+4}$ $=\dfrac{-24k}{3{k}^{2}+4}$, $\therefore$$x_{1}y_{2}+x_{2}y_{1}=\dfrac{-24k}{3k^{2}+4}(*)$, 联立$\left\{\begin{array}{l}y=y_{1}\\ y=\dfrac{2}{3}x-2\end{array}\right.$,可得$T(\dfrac{3y_{1}}{2}+3,y_{1}),H(3y_{1}+6-x_{1},y_{1})$, 可求得此时$HN:y-y_{2}=\dfrac{y_{1}-y_{2}}{3y_{1}+6-x_{1}-x_{2}}(x-x_{2})$, 将$(0,-2)$代入整理得$2(x_{1}+x_{2})-6(y_{1}+y_{2})+x_{1}y_{2}+x_{2}y_{1}-3y_{1}y_{2}-12=0$, 将$(*)$代入,得$24k+12k^{2}+96+48k-24k-48-48k+24k^{2}-36k^{2}-48=0$, 显然成立. 综上,可得直线$HN$过定点$(0,-2)$. 点评:本题考查了直线与椭圆的综合应用,属于中档题.
|
|
http://x.91apu.com//shuxue/gkt/2022/2022qgyw/2022-12-16/33511.html |