91学 首页 > 数学 > 高考题 > 2022 > 2022年全国乙文 > 正文 返回 打印

2022年高考数学乙卷-文18

  2022-12-16 17:37:55  

(12分)如图,四面体$ABCD$中,$AD\bot CD$,$AD=CD$,$\angle ADB=\angle BDC$,$E$为$AC$的中点.
(1)证明:平面$BED\bot$平面$ACD$;
(2)设$AB=BD=2$,$\angle ACB=60^\circ$,点$F$在$BD$上,当$\Delta AFC$的面积最小时,求三棱锥$F-ABC$的体积.

分析:(1)易证$\Delta ADB\cong \Delta CDB$,所以$AC\bot BE$,又$AC\bot DE$,由线面垂直的判定定理可得$AC\bot$平面$BED$,再由面面垂直的判定定理即可证得平面$BED\bot$平面$ACD$;
(2)由题意可知$\Delta ABC$是边长为2的等边三角形,进而求出$BE=\sqrt{3}$,$AC=2$,$AD=CD=\sqrt{2}$,$DE=1$,由勾股定理可得$DE\bot BE$,进而证得$DE\bot$平面$ABC$,连接$EF$,因为$AF=CF$,则$EF\bot AC$,所以当$EF\bot BD$时,$EF$最短,此时$\Delta AFC$的面积最小,求出此时点$F$到平面$ABC$的距离,从而求得此时三棱锥$F-ABC$的体积.
证明:(1)$\because AD=CD$,$\angle ADB=\angle BDC$,$BD=BD$,
$\therefore \Delta ADB\cong \Delta CDB$,
$\therefore AB=BC$,又$\because E$为$AC$的中点.
$\therefore AC\bot BE$,
$\because AD=CD$,$E$为$AC$的中点.
$\therefore AC\bot DE$,又$\because BE\bigcap DE=E$,
$\therefore AC\bot$平面$BED$,
又$\because AC\subset$平面$ACD$,
$\therefore$平面$BED\bot$平面$ACD$;
解:(2)由(1)可知$AB=BC$,
$\therefore AB=BC=2$,$\angle ACB=60^\circ$,$\therefore \Delta ABC$是等边三角形,边长为2,
$\therefore BE=\sqrt{3}$,$AC=2$,$AD=CD=\sqrt{2}$,$DE=1$,
$\because DE^{2}+BE^{2}=BD^{2}$,$\therefore DE\bot BE$,
又$\because DE\bot AC$,$AC\bigcap BE=E$,
$\therefore DE\bot$平面$ABC$,
由(1)知$\Delta ADB\cong \Delta CDB$,$\therefore AF=CF$,连接$EF$,则$EF\bot AC$,
$\therefore S_{\Delta AFC}=\dfrac{1}{2}\times AC\times EF=EF$,
$\therefore$当$EF\bot BD$时,$EF$最短,此时$\Delta AFC$的面积最小,
过点$F$作$FG\bot BE$于点$G$,则$FG//DE$,$\therefore FG\bot$平面$ABC$,
$\because EF=\dfrac{DE\times BE}{BD}=\dfrac{\sqrt{3}}{2}$,
$\therefore BF=\sqrt{B{E}^{2}-E{F}^{2}}=\dfrac{3}{2}$,$\therefore FG=\dfrac{EF\times BF}{BE}=\dfrac{3}{4}$,
$\therefore$三棱锥$F-ABC$的体积$V=\dfrac{1}{3}\times {S}_{\Delta ABC}\times FG=\dfrac{1}{3}\times \dfrac{\sqrt{3}}{4}\times {2}^{2}\times \dfrac{3}{4}=\dfrac{\sqrt{3}}{4}$.

点评:本题主要考查了面面垂直的判定定理,考查了三棱锥的体积公式,同时考查了学生的空间想象能力与计算能力,是中档题.

http://x.91apu.com//shuxue/gkt/2022/2022qgyw/2022-12-16/33508.html