(12分)如图,四面体$ABCD$中,$AD\bot CD$,$AD=CD$,$\angle ADB=\angle BDC$,$E$为$AC$的中点. (1)证明:平面$BED\bot$平面$ACD$; (2)设$AB=BD=2$,$\angle ACB=60^\circ$,点$F$在$BD$上,当$\Delta AFC$的面积最小时,求三棱锥$F-ABC$的体积.
分析:(1)易证$\Delta ADB\cong \Delta CDB$,所以$AC\bot BE$,又$AC\bot DE$,由线面垂直的判定定理可得$AC\bot$平面$BED$,再由面面垂直的判定定理即可证得平面$BED\bot$平面$ACD$; (2)由题意可知$\Delta ABC$是边长为2的等边三角形,进而求出$BE=\sqrt{3}$,$AC=2$,$AD=CD=\sqrt{2}$,$DE=1$,由勾股定理可得$DE\bot BE$,进而证得$DE\bot$平面$ABC$,连接$EF$,因为$AF=CF$,则$EF\bot AC$,所以当$EF\bot BD$时,$EF$最短,此时$\Delta AFC$的面积最小,求出此时点$F$到平面$ABC$的距离,从而求得此时三棱锥$F-ABC$的体积. 证明:(1)$\because AD=CD$,$\angle ADB=\angle BDC$,$BD=BD$, $\therefore \Delta ADB\cong \Delta CDB$, $\therefore AB=BC$,又$\because E$为$AC$的中点. $\therefore AC\bot BE$, $\because AD=CD$,$E$为$AC$的中点. $\therefore AC\bot DE$,又$\because BE\bigcap DE=E$, $\therefore AC\bot$平面$BED$, 又$\because AC\subset$平面$ACD$, $\therefore$平面$BED\bot$平面$ACD$; 解:(2)由(1)可知$AB=BC$, $\therefore AB=BC=2$,$\angle ACB=60^\circ$,$\therefore \Delta ABC$是等边三角形,边长为2, $\therefore BE=\sqrt{3}$,$AC=2$,$AD=CD=\sqrt{2}$,$DE=1$, $\because DE^{2}+BE^{2}=BD^{2}$,$\therefore DE\bot BE$, 又$\because DE\bot AC$,$AC\bigcap BE=E$, $\therefore DE\bot$平面$ABC$, 由(1)知$\Delta ADB\cong \Delta CDB$,$\therefore AF=CF$,连接$EF$,则$EF\bot AC$, $\therefore S_{\Delta AFC}=\dfrac{1}{2}\times AC\times EF=EF$, $\therefore$当$EF\bot BD$时,$EF$最短,此时$\Delta AFC$的面积最小, 过点$F$作$FG\bot BE$于点$G$,则$FG//DE$,$\therefore FG\bot$平面$ABC$, $\because EF=\dfrac{DE\times BE}{BD}=\dfrac{\sqrt{3}}{2}$, $\therefore BF=\sqrt{B{E}^{2}-E{F}^{2}}=\dfrac{3}{2}$,$\therefore FG=\dfrac{EF\times BF}{BE}=\dfrac{3}{4}$, $\therefore$三棱锥$F-ABC$的体积$V=\dfrac{1}{3}\times {S}_{\Delta ABC}\times FG=\dfrac{1}{3}\times \dfrac{\sqrt{3}}{4}\times {2}^{2}\times \dfrac{3}{4}=\dfrac{\sqrt{3}}{4}$.
点评:本题主要考查了面面垂直的判定定理,考查了三棱锥的体积公式,同时考查了学生的空间想象能力与计算能力,是中档题.
|