2022年高考数学乙卷-文11 |
|
2022-12-16 17:36:55 |
|
(5分)函数$f(x)=\cos x+(x+1)\sin x+1$在区间$[0$,$2\pi ]$的最小值、最大值分别为( ) A.$-\dfrac{\pi }{2}$,$\dfrac{\pi }{2}$ B.$-\dfrac{3\pi }{2}$,$\dfrac{\pi }{2}$ C.$-\dfrac{\pi }{2}$,$\dfrac{\pi }{2}+2$ D.$-\dfrac{3\pi }{2}$,$\dfrac{\pi }{2}+2$ 分析:先求出导函数$f\prime (x)=(x+1)\cos x$,令$\cos x=0$得,$x=\dfrac{\pi }{2}$或$\dfrac{3\pi }{2}$,根据导函数$f\prime (x)$的正负得到函数$f(x)$的单调性,进而求出函数$f(x)$的极值,再与端点值比较即可. 解:$f(x)=\cos x+(x+1)\sin x+1$,$x\in [0$,$2\pi ]$, 则$f\prime (x)=-\sin x+\sin x+(x+1)\cos x=(x+1)\cos x$, 令$\cos x=0$得,$x=\dfrac{\pi }{2}$或$\dfrac{3\pi }{2}$, $\therefore$当$x\in [0$,$\dfrac{\pi }{2})$时,$f\prime (x) > 0$,$f(x)$单调递增;当$x\in (\dfrac{\pi }{2},\dfrac{3\pi }{2})$时,$f\prime (x) < 0$,$f(x)$单调递减;当$x\in (\dfrac{3\pi }{2}$,$2\pi ]$时,$f\prime (x) > 0$,$f(x)$单调递增, $\therefore f(x)$在区间$[0$,$2\pi ]$上的极大值为$f(\dfrac{\pi }{2})=\dfrac{\pi }{2}+2$,极小值为$f(\dfrac{3\pi }{2})=-\dfrac{3\pi }{2}$, 又$\because f(0)=2$,$f(2\pi )=2$, $\therefore$函数$f(x)$在区间$[0$,$2\pi ]$的最小值为$-\dfrac{3\pi }{2}$,最大值为$\dfrac{\pi }{2}+2$, 故选:$D$. 点评:本题主要考查了利用导数研究函数的最值,属于中档题.
|
|
http://x.91apu.com//shuxue/gkt/2022/2022qgyw/2022-12-16/33501.html |