2022年高考数学乙卷-理22 |
|
2022-12-16 17:38:38 |
|
[选修4-4:坐标系与参数方程](10分) (10分)在直角坐标系$xOy$中,曲线$C$的参数方程为$\left\{\begin{array}{l}x=\sqrt{3}\cos 2t,\\ y=2\sin t\end{array}\right.(t$为参数).以坐标原点为极点,$x$轴正半轴为极轴建立极坐标系,已知直线$l$的极坐标方程为$\rho \sin (\theta +\dfrac{\pi }{3})+m=0$. (1)写出$l$的直角坐标方程; (2)若$l$与$C$有公共点,求$m$的取值范围. 分析:(1)由$\rho \sin (\theta +\dfrac{\pi }{3})+m=0$,展开两角和的正弦,结合极坐标与直角坐标的互化公式,可得$l$的直角坐标方程; (2)化曲线$C$的参数方程为普通方程,联立直线方程与曲线$C$的方程,化为关于$y$的一元二次方程,再求解$m$的取值范围. 解答:解:(1)由$\rho \sin (\theta +\dfrac{\pi }{3})+m=0$,得$\rho (\sin \theta \cos \dfrac{\pi }{3}+\cos \theta \sin \dfrac{\pi }{3})+m=0$, $\therefore$$\dfrac{1}{2}\rho \sin \theta +\dfrac{\sqrt{3}}{2}\rho \cos \theta +m=0$, 又$x=\rho \cos \theta$,$y=\rho \sin \theta$,$\therefore$$\dfrac{1}{2}y+\dfrac{\sqrt{3}}{2}x+m=0$, 即$l$的直角坐标方程为$\sqrt{3}x+y+2m=0$; (2)由曲线$C$的参数方程为$\left\{\begin{array}{l}x=\sqrt{3}\cos 2t,\\ y=2\sin t\end{array}\right.(t$为参数). 消去参数$t$,可得${y}^{2}=-\dfrac{2\sqrt{3}}{3}x+2$, 联立$\left\{\begin{array}{l}{\sqrt{3}x+y+2m=0}\\ {{y}^{2}=-\dfrac{2\sqrt{3}}{3}x+2}\end{array}\right.$,得$3y^{2}-2y-4m-6=0(-2\leqslant y\leqslant 2)$. $\therefore 4m=3y^{2}-2y-6$, 令$g(y)=3y^{2}-2y-6(-2\leqslant y\leqslant 2)$, 可得$g(y)_{min}=g(\dfrac{1}{3})=\dfrac{1}{3}-\dfrac{2}{3}-6=-\dfrac{19}{3}$,当$y=-2$时,$g(y)_{max}=g(-2)=10$, $\therefore -\dfrac{19}{3}\leqslant 4m\leqslant 10$,$-\dfrac{19}{12}\leqslant m\leqslant \dfrac{5}{2}$, $\therefore m$的取值范围是$[-\dfrac{19}{12}$,$\dfrac{5}{2}]$. 点评:本题考查简单曲线的极坐标方程,考查参数方程化普通方程,考查直线与抛物线位置关系的应用,是中档题.
|
|
http://x.91apu.com//shuxue/gkt/2022/2022qgyl/2022-12-16/33489.html |