(12分)如图,四面体$ABCD$中,$AD\bot CD$,$AD=CD$,$\angle ADB=\angle BDC$,$E$为$AC$的中点. (1)证明:平面$BED\bot$平面$ACD$; (2)设$AB=BD=2$,$\angle ACB=60^\circ$,点$F$在$BD$上,当$\Delta AFC$的面积最小时,求$CF$与平面$ABD$所成的角的正弦值.
分析:(1)利用三角形全等可得$AB=BC$,可证$EB\bot AC$,易证$DE\bot AC$,从而可证平面$BED\bot$平面$ACD$; (2)由题意可知$\Delta AFC$的面积最小时,$EF\bot BD$,据此计算可求得$CF$与平面$ABD$所成的角的正弦值. 解答:(1)证明:$\because AD=CD$,$E$为$AC$的中点.$\therefore DE\bot AC$, 又$\because AD=CD$,$\angle ADB=\angle BDC$,$BD=BD$,$\therefore \Delta ABD\cong \Delta CBD$, $\therefore AB=BC$,又$\because E$为$AC$的中点.$\therefore EB\bot AC$,又$BE\bigcap DE=E$,$BE\subset$平面$BED$,$DE\subset$平面$BED$, $\therefore AC\bot$平面$BED$,又$AC\subset$平面$ACD$,$\therefore$平面$BED\bot$平面$ACD$; (2)解:连接$EF$,由(1)知$AC\bot EF$,$\therefore S_{\Delta AFC}=\dfrac{1}{2}AC\times EF$,
故$EF$最小时,$\Delta AFC$的面积最小,$\therefore EF\bot BD$时,$\Delta AFC$的面积最小, 又$AC\bot$平面$BED$,$BD\subset$平面$BED$,$\therefore AC\bot BD$,又$AC\bigcap EF=E$,$AC\subset$平面$AFC$,$EF\subset$平面$AFC$, $\therefore BD\bot$平面$AFC$,又$BD\subset$平面$ABD$,$\therefore$平面$ABD\bot$平面$AFC$, 过$C$作$CM\bot AF$于点$M$,则$CM\bot$平面$ABD$, 故$\angle CFM$,即$\angle CFA$为直线$CF$与平面$ABD$所成的角, 由$AB=BD=2$,$\angle ACB=60^\circ$,知$\Delta BAC$是2为边长的等边三角形, 故$AC=2$,由已知可得$DE=1$,$BE=\sqrt{3}$,又$BD=2$,$\therefore BD^{2}=ED^{2}+EB^{2}$, $\therefore \angle BED=90^\circ$,所以$EF=\dfrac{BE\times DE}{BD}=\dfrac{\sqrt{3}}{2}$, $\therefore CF=\sqrt{{1}^{2}+\dfrac{3}{4}}=\dfrac{\sqrt{7}}{2}$,$\therefore AF=\dfrac{\sqrt{7}}{2}$, 在$\Delta ACF$中,由余弦定理得$\cos \angle AFC=\dfrac{\dfrac{7}{4}+\dfrac{7}{4}-4}{2\times \dfrac{\sqrt{7}}{2}\times \dfrac{\sqrt{7}}{2}}=-\dfrac{1}{7}$, $\therefore \sin \angle AFC=\dfrac{4\sqrt{3}}{7}$. 故$CF$与平面$ABD$所成的角的正弦值为$\dfrac{4\sqrt{3}}{7}$. 点评:本题考查面面垂直的证明,考查线面角的正弦值的求法,属中档题.
|