[选修4-5:不等式选讲](10分) 已知a,b,c均为正数,且a2+b2+4c2=3,证明: (1)a+b+2c⩽3; (2)若b=2c,则1a+1c⩾3. 分析:(1)由已知结合柯西不等式证明; (2)法一、由已知结合(1)中的结论,再由权方和不等式证明. 法二、由(1)知,a+4c⩽3,当且仅当a=2c=1等号成立,再由1a+1c=13⋅(1a+1c)⋅3,结合基本不等式证明. 证明:(1)∵,b,c均为正数,且a^{2}+b^{2}+4c^{2}=3, \therefore由柯西不等式知,(a^{2}+b^{2}+4c^{2})(1^{2}+1^{2}+1^{2})\geqslant (a+b+2c)^{2}, 即3\times 3\geqslant (a+b+2c)^{2},\therefore a+b+2c\leqslant 3; 当且仅当a=b=2c,即a=b=1,c=\dfrac{1}{2}时取等号; (2)法一、由(1)知,a+b+2c\leqslant 3且b=2c, 故0 < a+4c\leqslant 3,则\dfrac{1}{a+4c}\geqslant \dfrac{1}{3}, 由权方和不等式可知,\dfrac{1}{a}+\dfrac{1}{c}=\dfrac{{1}^{2}}{a}+\dfrac{{2}^{2}}{4c}\geqslant \dfrac{9}{a+4c}\geqslant 3,当且仅当\dfrac{1}{\;a}=\dfrac{2}{4c},即a=1,c=\dfrac{1}{2}时取等号, 故\dfrac{1}{a}+\dfrac{1}{c}\geqslant 3. 法二、由(1)知,a+4c\leqslant 3,当且仅当a=2c=1等号成立, \therefore\dfrac{1}{a}+\dfrac{1}{c}=\dfrac{1}{3}\cdot (\dfrac{1}{a}+\dfrac{1}{c})\cdot 3\geqslant \dfrac{1}{3}\cdot (\dfrac{1}{a}+\dfrac{1}{c})\cdot (a+4c) =\dfrac{1}{3}(\dfrac{4c}{a}+\dfrac{a}{c}+5)\geqslant \dfrac{1}{3}(2\sqrt{\dfrac{4c}{a}\cdot \dfrac{a}{c}}+5)=3,当且仅当a=2c=1等号成立, 故\dfrac{1}{a}+\dfrac{1}{c}\geqslant 3. 点评:本题考查不等式的证明,考查柯西不等式与权方和不等式的应用,是中档题.
|