2022年高考数学甲卷-文21 |
|
2022-12-16 17:43:20 |
|
(12分)设抛物线$C:y^{2}=2px(p > 0)$的焦点为$F$,点$D(p,0)$,过$F$的直线交$C$于$M$,$N$两点.当直线$MD$垂直于$x$轴时,$\vert MF\vert =3$. (1)求$C$的方程; (2)设直线$MD$,$ND$与$C$的另一个交点分别为$A$,$B$,记直线$MN$,$AB$的倾斜角分别为$\alpha$,$\beta$.当$\alpha -\beta$取得最大值时,求直线$AB$的方程. 分析:(1)由已知求得$\vert MD\vert =\sqrt{2}p$,$\vert FD\vert =\dfrac{p}{2}$,则在$\rm{Rt}\Delta MFD$中,利用勾股定理得$p=2$,则$C$的方程可求; (2)设$M$,$N$,$A$,$B$的坐标,写出$\tan \alpha$与$\tan \beta$,再由三点共线可得${y}_{3}=-\dfrac{8}{{y}_{1}}$,${y}_{4}=-\dfrac{8}{{y}_{2}}$;由题意可知,直线$MN$的斜率不为0,设$l_{MN}:x=my+1$,联立直线方程与抛物线方程,化为关于$y$的一元二次方程,利用根与系数的关系可得$y_{1}+y_{2}=4m$,$y_{1}y_{2}=-4$,求得$\tan \beta$与$\tan \alpha$,再由两角差的正切及基本不等式判断,从而求得$AB$的方程. 解:(1)由题意可知,当$x=p$时,$y^{2}=2p^{2}$,得$y_{M}=\sqrt{2}p$,可知$\vert MD\vert =\sqrt{2}p$,$\vert FD\vert =\dfrac{p}{2}$. 则在$\rm{Rt}\Delta MFD$中,$\vert FD\vert ^{2}+\vert DM\vert ^{2}=\vert FM\vert ^{2}$,得$(\dfrac{p}{2})^{2}+(\sqrt{2}p)^{2}=9$,解得$p=2$. 则$C$的方程为$y^{2}=4x$; (2)设$M(x_{1}$,$y_{1})$,$N(x_{2}$,$y_{2})$,$A(x_{3}$,$y_{3})$,$B(x_{4}$,$y_{4})$, 当$MN$与$x$轴垂直时,由对称性可知,$AB$也与$x$轴垂直, 此时$\alpha =\beta =\dfrac{\pi }{2}$,则$\alpha -\beta =0$, 由(1)可知$F(1,0)$,$D(2,0)$,则$\tan \alpha =k_{MN}=\dfrac{{y}_{1}-{y}_{2}}{{x}_{1}-{x}_{2}}=\dfrac{{y}_{1}-{y}_{2}}{\dfrac{{{y}_{1}}^{2}}{4}-\dfrac{{{y}_{2}}^{2}}{4}}=\dfrac{4}{{y}_{1}+{y}_{2}}$, 又$N$、$D$、$B$三点共线,则$k_{ND}=k_{BD}$,即$\dfrac{{y}_{2}-0}{{x}_{2}-2}=\dfrac{{y}_{4}-0}{{x}_{4}-2}$, $\therefore$$\dfrac{{y}_{2}-0}{\dfrac{{{y}_{2}}^{2}}{4}-2}=\dfrac{{y}_{4}-0}{\dfrac{{{y}_{4}}^{2}}{4}-2}$, 得$y_{2}y_{4}=-8$,即$y_{4}=-\dfrac{8}{{y}_{2}}$; 同理由$M$、$D$、$A$三点共线,得$y_{3}=-\dfrac{8}{{y}_{1}}$. 则$\tan \beta =\dfrac{{y}_{3}-{y}_{4}}{{x}_{3}-{x}_{4}}=\dfrac{4}{{y}_{3}+{y}_{4}}=\dfrac{{y}_{1}{y}_{2}}{-2({y}_{1}+{y}_{2})}$. 由题意可知,直线$MN$的斜率不为0,设$l_{MN}:x=my+1$, 由$\left\{\begin{array}{l}{{y}^{2}=4x}\\ {x=my+1}\end{array}\right.$,得$y^{2}-4my-4=0$, $y_{1}+y_{2}=4m$,$y_{1}y_{2}=-4$,则$\tan \alpha =\dfrac{4}{4m}=\dfrac{1}{m}$,$\tan \beta =\dfrac{-4}{-2\times 4m}=\dfrac{1}{2m}$, 则$\tan (\alpha -\beta )=\dfrac{\tan \alpha -\tan \beta }{1+\tan \alpha \tan \beta }=\dfrac{\dfrac{1}{m}-\dfrac{1}{2m}}{1+\dfrac{1}{2m}\cdot \dfrac{1}{m}}=\dfrac{1}{2m+\dfrac{1}{m}}$, $\because$$\tan \alpha =\dfrac{1}{m}$,$\tan \beta =\dfrac{1}{2m}$, $\therefore \tan \alpha$与$\tan \beta$正负相同, $\therefore$$-\dfrac{\pi }{2} < \alpha -\beta < \dfrac{\pi }{2}$, $\therefore$当$\alpha -\beta$取得最大值时,$\tan (\alpha -\beta )$取得最大值, 当$m > 0$时,$\tan (\alpha -\beta )=\dfrac{1}{2m+\dfrac{1}{m}}\leqslant \dfrac{1}{2\sqrt{2m\cdot \dfrac{1}{m}}}=\dfrac{\sqrt{2}}{4}$;当$m < 0$时,$\tan (\alpha -\beta )$无最大值, $\therefore$当且仅当$2m=\dfrac{1}{m}$,即$m=\dfrac{\sqrt{2}}{2}$时,等号成立,$\tan (\alpha -\beta )$取最大值, 此时$AB$的直线方程为$y-y_{3}=\dfrac{4}{{y}_{3}+{y}_{4}}(x-{x}_{3})$,即$4x-(y_{3}+y_{4})y+y_{3}y_{4}=0$, 又$\because y_{3}+y_{4}=-\dfrac{8}{{y}_{1}}-\dfrac{8}{{y}_{2}}=\dfrac{-8({y}_{1}+{y}_{2})}{{y}_{1}{y}_{2}}=8m=4\sqrt{2}$,$y_{3}y_{4}=\dfrac{-8}{{y}_{1}}\cdot \dfrac{-8}{{y}_{2}}=-16$, $\therefore AB$的方程为$4x-4\sqrt{2}y-16=0$,即$x-\sqrt{2}y-4=0$. 点评:本题考查抛物线方程的求法,考查直线与抛物线位置关系的应用,考查运算求解能力,属难题.
|
|
http://x.91apu.com//shuxue/gkt/2022/2022qgjw/2022-12-16/33465.html |