2022年高考数学甲卷-文11 |
|
2022-12-16 17:40:51 |
|
(5分)已知椭圆$C:\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1(a > b > 0)$的离心率为$\dfrac{1}{3}$,$A_{1}$,$A_{2}$分别为$C$的左、右顶点,$B$为$C$的上顶点.若$\overrightarrow{B{A_1}}\cdot \overrightarrow{B{A_2}}=-1$,则$C$的方程为( ) A.$\dfrac{x^2}{18}+\dfrac{y^2}{16}=1$ B.$\dfrac{x^2}{9}+\dfrac{y^2}{8}=1$ C.$\dfrac{x^2}{3}+\dfrac{y^2}{2}=1$ D.$\dfrac{x^2}{2}+y^{2}=1$ 分析:首先设出椭圆方程,然后结合平面向量的数量积运算法则可得椭圆方程. 解:由椭圆的离心率可设椭圆方程为$\dfrac{{x}^{2}}{9{m}^{2}}+\dfrac{{y}^{2}}{8{m}^{2}}=1(m > 0)$, 则$A_{1}(-3m,0),A_{2}(3m,0),B(0,2\sqrt{2}m)$, 由平面向量数量积的运算法则可得: $\overrightarrow{BA_{1}}\cdot \overrightarrow{BA_{2}}=(-3m,-2\sqrt{2}m)\cdot (3m,-2\sqrt{2}m)=-9m^{2}+8m^{2}=-1$,$\therefore m^{2}=1$, 则椭圆方程为$\dfrac{{x}^{2}}{9}+\dfrac{{y}^{2}}{8}=1$. 故选:$B$. 点评:本题主要考查椭圆方程的求解,平面向量数量积的坐标运算等知识,属于中等题.
|
|
http://x.91apu.com//shuxue/gkt/2022/2022qgjw/2022-12-16/33455.html |