[选修4-5:不等式选讲](10分) 23.已知$a$,$b$,$c$均为正数,且$a^{2}+b^{2}+4c^{2}=3$,证明: (1)$a+b+2c\leqslant 3$; (2)若$b=2c$,则$\dfrac{1}{a}+\dfrac{1}{c}\geqslant 3$. 分析:(1)由已知结合柯西不等式证明; (2)法一、由已知结合(1)中的结论,再由权方和不等式证明. 法二、由(1)知,$a+4c\leqslant 3$,当且仅当$a=2c=1$等号成立,再由$\dfrac{1}{a}+\dfrac{1}{c}=\dfrac{1}{3}\cdot (\dfrac{1}{a}+\dfrac{1}{c})\cdot 3$,结合基本不等式证明. 解答:证明:(1)$\because a$,$b$,$c$均为正数,且$a^{2}+b^{2}+4c^{2}=3$, $\therefore$由柯西不等式知,$(a^{2}+b^{2}+4c^{2})(1^{2}+1^{2}+1^{2})\geqslant (a+b+2c)^{2}$, 即$3\times 3\geqslant (a+b+2c)^{2}$,$\therefore a+b+2c\leqslant 3$; 当且仅当$a=b=2c$,即$a=b=1$,$c=\dfrac{1}{2}$时取等号; (2)法一、由(1)知,$a+b+2c\leqslant 3$且$b=2c$, 故$0 < a+4c\leqslant 3$,则$\dfrac{1}{a+4c}\geqslant \dfrac{1}{3}$, 由权方和不等式可知,$\dfrac{1}{a}+\dfrac{1}{c}=\dfrac{{1}^{2}}{a}+\dfrac{{2}^{2}}{4c}\geqslant \dfrac{9}{a+4c}\geqslant 3$,当且仅当$\dfrac{1}{\;a}=\dfrac{2}{4c}$,即$a=1$,$c=\dfrac{1}{2}$时取等号, 故$\dfrac{1}{a}+\dfrac{1}{c}\geqslant 3$. 法二、由(1)知,$a+4c\leqslant 3$,当且仅当$a=2c=1$等号成立, $\therefore$$\dfrac{1}{a}+\dfrac{1}{c}=\dfrac{1}{3}\cdot (\dfrac{1}{a}+\dfrac{1}{c})\cdot 3\geqslant \dfrac{1}{3}\cdot (\dfrac{1}{a}+\dfrac{1}{c})\cdot (a+4c)$ $=\dfrac{1}{3}(\dfrac{4c}{a}+\dfrac{a}{c}+5)\geqslant \dfrac{1}{3}(2\sqrt{\dfrac{4c}{a}\cdot \dfrac{a}{c}}+5)=3$,当且仅当$a=2c=1$等号成立, 故$\dfrac{1}{a}+\dfrac{1}{c}\geqslant 3$. 解答:本题考查不等式的证明,考查柯西不等式与权方和不等式的应用,是中档题.
|