2022年高考数学甲卷-理12 |
|
2022-12-16 17:37:00 |
|
(5分)已知$a=\dfrac{31}{32}$,$b=\cos \dfrac{1}{4}$,$c=4\sin \dfrac{1}{4}$,则( ) A.$c > b > a$ B.$b > a > c$ C.$a > b > c$ D.$a > c > b$ 分析:构造函数$f(x)=\cos x+\dfrac{1}{2}{x}^{2}-1$,$(0 < x < 1)$,可得$\cos \dfrac{1}{4} > \dfrac{31}{32}$,即$b > a$,利用三角函数线可得$\tan x > x$,即$\tan \dfrac{1}{4} > \dfrac{1}{4}$,即$\dfrac{\sin \dfrac{1}{4}}{\cos \dfrac{1}{4}} > \dfrac{1}{4}$,可得$c > b$. 解答:解:设$f(x)=\cos x+\dfrac{1}{2}{x}^{2}-1$,$(0 < x < 1)$,则$f\prime (x)=x-\sin x$, 设$g(x)=x-\sin x(0 < x < 1)$,$g\prime (x)=1-\cos x > 0$, 故$g(x)$在$(0,1)$单调递增,即$g(x) > g(0)=0$, 即$f\prime (x) > 0$,故$f(x)$在$(0,1)$上单调递增, 所以$f(\dfrac{1}{4}) > f(0)=0$,可得$\cos \dfrac{1}{4} > \dfrac{31}{32}$,故$b > a$, 利用三角函数线可得$x\in (0,\dfrac{\pi }{2})$时,$\tan x > x$, $\therefore \tan \dfrac{1}{4} > \dfrac{1}{4}$,即$\dfrac{\sin \dfrac{1}{4}}{\cos \dfrac{1}{4}} > \dfrac{1}{4}$,$\therefore 4\sin \dfrac{1}{4} > \cos \dfrac{1}{4}$,故$c > b$. 综上:$c > b > a$, 故选:$A$. 解答:本题考查了三角函数不等式的证明与应用,考查了运算能力,属难题..
|
|
http://x.91apu.com//shuxue/gkt/2022/2022qgjl/2022-12-16/33433.html |