2022年高考数学甲卷-理11 |
|
2022-12-16 17:36:55 |
|
(5分)设函数$f(x)=\sin (\omega x+\dfrac{\pi }{3})$在区间$(0,\pi )$恰有三个极值点、两个零点,则$\omega$的取值范围是( ) A.$[\dfrac{5}{3}$,$\dfrac{13}{6})$ B.$[\dfrac{5}{3}$,$\dfrac{19}{6})$ C.$(\dfrac{13}{6}$,$\dfrac{8}{3}]$ D.$(\dfrac{13}{6}$,$\dfrac{19}{6}]$ 分析:由题意,利用正弦函数的极值点和零点,求得$\omega$的取值范围. 解答:解:当$\omega < 0$时,不能满足在区间$(0,\pi )$极值点比零点多,所以$\omega > 0$; 函数$f(x)=\sin (\omega x+\dfrac{\pi }{3})$在区间$(0,\pi )$恰有三个极值点、两个零点, $\omega x+\dfrac{\pi }{3}\in (\dfrac{\pi }{3}$,$\omega \pi +\dfrac{\pi }{3})$, $\therefore$$\dfrac{5\pi }{2} < \omega \pi +\dfrac{\pi }{3}\leqslant 3\pi$, 求得$\dfrac{13}{6} < \omega \leqslant \dfrac{8}{3}$, 故选:$C$. 解答:本题主要考查正弦函数的极值点和零点,属于中档题.
|
|
http://x.91apu.com//shuxue/gkt/2022/2022qgjl/2022-12-16/33432.html |