2022年高考数学甲卷-理10 |
|
2022-12-16 17:36:43 |
|
(5分)椭圆$C:\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1(a > b > 0)$的左顶点为$A$,点$P$,$Q$均在$C$上,且关于$y$轴对称.若直线$AP$,$AQ$的斜率之积为$\dfrac{1}{4}$,则$C$的离心率为( ) A.$\dfrac{\sqrt{3}}{2}$ B.$\dfrac{\sqrt{2}}{2}$ C.$\dfrac{1}{2}$ D.$\dfrac{1}{3}$ 分析:设$P(x_{0}$,$y_{0})$,则$Q(-x_{0}$,$y_{0})$,根据斜率公式结合题意可得:$k_{AP}\cdot k_{AQ}=\dfrac{1}{4}$,再结合$\dfrac{x^{2}}{a^{2}}+\dfrac{y^{2}}{b^{2}}=1$,整理可得离心率. 解答:解:已知$A(-a,0)$,设$P(x_{0}$,$y_{0})$,则$Q(-x_{0}$,$y_{0})$, $k_{AP}=\dfrac{{y}_{0}}{{x}_{0}+a}$, $k_{AQ}=\dfrac{{y}_{0}}{a-{x}_{0}}$, 故$k_{AP}\cdot k_{AQ}=\dfrac{{y}_{0}}{{x}_{0}+a}\cdot \dfrac{{y}_{0}}{a-{x}_{0}}=\dfrac{{y}_{0}^{2}}{a^{2}-{x}_{0}^{2}}=\dfrac{1}{4}$①, $\because$$\dfrac{{x}_{0}^{2}}{a^{2}}+\dfrac{{y}_{0}^{2}}{b^{2}}=1$,即${y}_{0}^{2}=\dfrac{b^{2}(a^{2}-{x}_{0}^{2})}{a^{2}}$②, ②代入①整理得:$\dfrac{b^{2}}{a^{2}}=\dfrac{1}{4}$, $e=\dfrac{c}{a}=\sqrt{1-\dfrac{b^{2}}{a^{2}}}=\dfrac{\sqrt{3}}{2}$. 故选:$A$. 解答:本题考查椭圆的简单几何性质,是基础题.
|
|
http://x.91apu.com//shuxue/gkt/2022/2022qgjl/2022-12-16/33431.html |