(5分)若$z=-1+\sqrt{3}i$,则$\dfrac{z}{z\overline{z}-1}=($ ) A.$-1+\sqrt{3}i$ B.$-1-\sqrt{3}i$ C.$-\dfrac{1}{3}+\dfrac{\sqrt{3}}{3}i$ D.$-\dfrac{1}{3}-\dfrac{\sqrt{3}}{3}i$ 分析:由已知求得$z\cdot \overline{z}$,代入$\dfrac{z}{z\overline{z}-1}$,则答案可求. 解答:解:$\because z=-1+\sqrt{3}i$,$\therefore$$z\cdot \overline{z}=\vert z{\vert }^{2}=(\sqrt{(-1)^{2}+(\sqrt{3})^{2}})^{2}=4$, 则$\dfrac{z}{z\overline{z}-1}=\dfrac{-1+\sqrt{3}i}{4-1}=-\dfrac{1}{3}+\dfrac{\sqrt{3}}{3}i$. 故选:$C$. 解答:本题考查复数代数形式的乘除运算,考查复数模的求法,是基础题.
|