(5分)已知正方体$ABCD-A_{1}B_{1}C_{1}D_{1}$,则( ) A.直线$BC_{1}$与$DA_{1}$所成的角为$90^\circ$ B.直线$BC_{1}$与$CA_{1}$所成的角为$90^\circ$ C.直线$BC_{1}$与平面$BB_{1}D_{1}D$所成的角为$45^\circ$ D.直线$BC_{1}$与平面$ABCD$所成的角为$45^\circ$ 分析:求出异面直线所成角判断$A$;证明线面垂直,结合线面垂直的性质判断$B$;分别求出线面角判断$C$与$D$. 解:如图,
连接$B_{1}C$,由$A_{1}B_{1}//DC$,$A_{1}B_{1}=DC$,得四边形$DA_{1}B_{1}C$为平行四边形, 可得$DA_{1}//B_{1}C$,$\because BC_{1}\bot B_{1}C$,$\therefore$直线$BC_{1}$与$DA_{1}$所成的角为$90^\circ$,故$A$正确; $\because A_{1}B_{1}\bot BC_{1}$,$BC_{1}\bot B_{1}C$,$A_{1}B_{1}\bigcap B_{1}C=B_{1}$,$\therefore BC_{1}\bot$平面$DA_{1}B_{1}C$,而$CA_{1}\subset$平面$DA_{1}B_{1}C$, $\therefore BC_{1}\bot CA_{1}$,即直线$BC_{1}$与$CA_{1}$所成的角为$90^\circ$,故$B$正确; 设$A_{1}C_{1}\bigcap B_{1}D_{1}=O$,连接$BO$,可得$C_{1}O\bot$平面$BB_{1}D_{1}D$,即$\angle C_{1}BO$为直线$BC_{1}$与平面$BB_{1}D_{1}D$所成的角, $\because \sin \angle C_{1}BO=\dfrac{O{C}_{1}}{B{C}_{1}}=\dfrac{1}{2}$,$\therefore$直线$BC_{1}$与平面$BB_{1}D_{1}D$所成的角为$30^\circ$,故$C$错误; $\because CC_{1}\bot$底面$ABCD$,$\therefore \angle C_{1}BC$为直线$BC_{1}$与平面$ABCD$所成的角为$45^\circ$,故$D$正确. 故选:$ABD$. 点评:本题考查空间中异面直线所成角与线面角的求法,考查空间想象能力与思维能力,考查运算求解能力,是基础题.
|