2021年高考数学上海春21 |
|
2022-05-03 08:32:33 |
|
21.(18分)已知数列$\{a_{n}\}$满足$a_{n}\geqslant 0$,对任意$n\geqslant 2$,$a_{n}$和$a_{n+1}$中存在一项使其为另一项与$a_{n-1}$的等差中项. (1)已知$a_{1}=5$,$a_{2}=3$,$a_{4}=2$,求$a_{3}$的所有可能取值; (2)已知$a_{1}=a_{4}=a_{7}=0$,$a_{2}$、$a_{5}$、$a_{8}$为正数,求证:$a_{2}$、$a_{5}$、$a_{8}$成等比数列,并求出公比$q$; (3)已知数列中恰有3项为0,即$a_{r}=a_{s}=a_{t}=0$,$2<r<s<t$,且$a_{1}=1$,$a_{2}=2$,求$a_{r+1}+a_{s+1}+a_{t+1}$的最大值. 分析:(1)根据$a_{n}$和$a_{n+1}$中存在一项使其为另一项与$a_{n-1}$的等差中项建立等式,然后将$a_{1}$,$a_{2}$,$a_{4}$的值代入即可; (2)根据递推关系求出$a_{5}$、$a_{8}$,然后根据等比数列的定义进行判定即可; (3)分别求出$a_{r+1}$,$a_{s+1}$,$a_{t+1}$的通项公式,从而可求出各自的最大值,从而可求出所求. 解:(1)由题意,$2a_{n}=a_{n+1}+a_{n-1}$或$2a_{n+1}=a_{n}+a_{n-1}$, $\therefore 2a_{2}=a_{3}+a_{1}$解得$a_{3}=1$,$2a_{3}=a_{2}+a_{1}$解得$a_{3}=4$,经检验,$a_{3}=1$, (2)证明:$\because a_{1}=a_{4}=a_{7}=0$,$\therefore a_{3}=2a_{2}$,或${a}_{3}=\dfrac{{a}_{2}}{2}$,经检验,${a}_{3}=\dfrac{{a}_{2}}{2}$; $\therefore$${a}_{5}=\dfrac{{a}_{3}}{2}=\dfrac{{a}_{2}}{4}$,或${a}_{5}=-{a}_{1}=-\dfrac{{a}_{2}}{2}$(舍$)$,$\therefore$${a}_{5}=\dfrac{{a}_{2}}{4}$; $\therefore$${a}_{6}=\dfrac{{a}_{5}}{2}=\dfrac{{a}_{2}}{8}$,或${a}_{6}=-{a}_{5}=-\dfrac{{a}_{2}}{4}$(舍$)$,$\therefore$${a}_{6}=\dfrac{{a}_{2}}{8}$; $\therefore$${a}_{8}=\dfrac{{a}_{6}}{2}=\dfrac{{a}_{2}}{16}$,或${a}_{8}=-{a}_{6}=-\dfrac{{a}_{2}}{8}$(舍$)$,$\therefore$${a}_{8}=\dfrac{{a}_{2}}{16}$; 综上,$a_{2}$、$a_{5}$、$a_{8}$成等比数列,公比为$\dfrac{1}{4}$; (3)由$2a_{n}=a_{n+1}+a_{n-1}$或$2a_{n+1}=a_{n}+a_{n-1}$,可知$\dfrac{{a}_{n+2}-{a}_{n+1}}{{a}_{n+1}-{a}_{n}}=1$或$\dfrac{{a}_{n+2}-{a}_{n+1}}{{a}_{n+1}-{a}_{n}}=-\dfrac{1}{2}$, 由第(2)问可知,$a_{r}=0$,则$a_{r-2}=2a_{r-1}$,即$a_{r-1}-a_{r-2}=-a_{r-1}$, $\therefore a_{r}=0$,则${a}_{r+1}=\dfrac{1}{2}{a}_{r-1}=-\dfrac{1}{2}({a}_{r-1}-{a}_{r-2})=-\dfrac{1}{2}\cdot (-\dfrac{1}{2})^{i}\cdot {1}^{r-3-i}\cdot ({a}_{2}-{a}_{1})=-\dfrac{1}{2}\cdot (-\dfrac{1}{2})^{i},i\in N*$, $\therefore$$({a}_{r+1})_{max}=\dfrac{1}{4}$, 同理,${a}_{s+1}=-\dfrac{1}{2}\cdot (-\dfrac{1}{2})^{j}\cdot {1}^{s-2-r-j}\cdot ({a}_{r+1}-{a}_{r})=-\dfrac{1}{2}\cdot (-\dfrac{1}{2})^{j}\cdot \dfrac{1}{4},j\in {N}^{*}$, $\therefore$$({a}_{s+1})_{max}=\dfrac{1}{16}$,同理,$({a}_{t+1})_{max}=\dfrac{1}{64}$,$\therefore a_{r+1}+a_{s+1}+a_{t+1}$的最大值$\dfrac{21}{64}$. 点评:本题主要考查了数列的综合应用,等比数列的判定以及通项公式的求解,同时考查了学生计算能力,属于难题.
|
|
http://x.91apu.com//shuxue/gkt/2021/2021shc/2022-05-03/33375.html |