2021年高考数学上海春21 |
|
2022-05-03 08:32:33 |
|
21.(18分)已知数列{an}满足an⩾0,对任意n⩾2,an和an+1中存在一项使其为另一项与an−1的等差中项. (1)已知a1=5,a2=3,a4=2,求a3的所有可能取值; (2)已知a1=a4=a7=0,a2、a5、a8为正数,求证:a2、a5、a8成等比数列,并求出公比q; (3)已知数列中恰有3项为0,即ar=as=at=0,2<r<s<t,且a1=1,a2=2,求ar+1+as+1+at+1的最大值. 分析:(1)根据an和an+1中存在一项使其为另一项与an−1的等差中项建立等式,然后将a1,a2,a4的值代入即可; (2)根据递推关系求出a5、a8,然后根据等比数列的定义进行判定即可; (3)分别求出ar+1,as+1,at+1的通项公式,从而可求出各自的最大值,从而可求出所求. 解:(1)由题意,2an=an+1+an−1或2an+1=an+an−1, ∴解得a_{3}=1,2a_{3}=a_{2}+a_{1}解得a_{3}=4,经检验,a_{3}=1, (2)证明:\because a_{1}=a_{4}=a_{7}=0,\therefore a_{3}=2a_{2},或{a}_{3}=\dfrac{{a}_{2}}{2},经检验,{a}_{3}=\dfrac{{a}_{2}}{2}; \therefore{a}_{5}=\dfrac{{a}_{3}}{2}=\dfrac{{a}_{2}}{4},或{a}_{5}=-{a}_{1}=-\dfrac{{a}_{2}}{2}(舍),\therefore{a}_{5}=\dfrac{{a}_{2}}{4}; \therefore{a}_{6}=\dfrac{{a}_{5}}{2}=\dfrac{{a}_{2}}{8},或{a}_{6}=-{a}_{5}=-\dfrac{{a}_{2}}{4}(舍),\therefore{a}_{6}=\dfrac{{a}_{2}}{8}; \therefore{a}_{8}=\dfrac{{a}_{6}}{2}=\dfrac{{a}_{2}}{16},或{a}_{8}=-{a}_{6}=-\dfrac{{a}_{2}}{8}(舍),\therefore{a}_{8}=\dfrac{{a}_{2}}{16}; 综上,a_{2}、a_{5}、a_{8}成等比数列,公比为\dfrac{1}{4}; (3)由2a_{n}=a_{n+1}+a_{n-1}或2a_{n+1}=a_{n}+a_{n-1},可知\dfrac{{a}_{n+2}-{a}_{n+1}}{{a}_{n+1}-{a}_{n}}=1或\dfrac{{a}_{n+2}-{a}_{n+1}}{{a}_{n+1}-{a}_{n}}=-\dfrac{1}{2}, 由第(2)问可知,a_{r}=0,则a_{r-2}=2a_{r-1},即a_{r-1}-a_{r-2}=-a_{r-1}, \therefore a_{r}=0,则{a}_{r+1}=\dfrac{1}{2}{a}_{r-1}=-\dfrac{1}{2}({a}_{r-1}-{a}_{r-2})=-\dfrac{1}{2}\cdot (-\dfrac{1}{2})^{i}\cdot {1}^{r-3-i}\cdot ({a}_{2}-{a}_{1})=-\dfrac{1}{2}\cdot (-\dfrac{1}{2})^{i},i\in N*, \therefore({a}_{r+1})_{max}=\dfrac{1}{4}, 同理,{a}_{s+1}=-\dfrac{1}{2}\cdot (-\dfrac{1}{2})^{j}\cdot {1}^{s-2-r-j}\cdot ({a}_{r+1}-{a}_{r})=-\dfrac{1}{2}\cdot (-\dfrac{1}{2})^{j}\cdot \dfrac{1}{4},j\in {N}^{*}, \therefore({a}_{s+1})_{max}=\dfrac{1}{16},同理,({a}_{t+1})_{max}=\dfrac{1}{64},\therefore a_{r+1}+a_{s+1}+a_{t+1}的最大值\dfrac{21}{64}. 点评:本题主要考查了数列的综合应用,等比数列的判定以及通项公式的求解,同时考查了学生计算能力,属于难题.
|
|
http://x.91apu.com//shuxue/gkt/2021/2021shc/2022-05-03/33375.html |