9.(5分)在无穷等比数列$\{a_{n}\}$中,$\lim\limits_{n\rightarrow \infty }(a_{1}-a_{n})=4$,则$a_{2}$的取值范围是____. 分析:由无穷等比数列的概念可得公比$q$的取值范围,再由极限的运算知$a_{1}=4$,从而得解. 解:$\because$无穷等比数列$\{a_{n}\}$,$\therefore$公比$q\in (-1$,$0)\bigcup (0$,$1)$, $\therefore$$\lim\limits_{n\rightarrow \infty }a_{n}=0$, $\therefore$$\lim\limits_{n\rightarrow \infty }(a_{1}-a_{n})=a_{1}=4$, $\therefore a_{2}=a_{1}q=4q\in (-4$,$0)\bigcup (0$,$4)$. 故答案为:$(-4$,$0)\bigcup (0$,$4)$. 点评:本题考查无穷等比数列的概念与性质,极限的运算,考查学生的运算求解能力,属于基础题.
|