2021年高考数学浙江22 |
|
2022-05-03 08:09:46 |
|
22.(15分)设a,b为实数,且a>1,函数f(x)=ax−bx+e2(x∈R). (Ⅰ)求函数f(x)的单调区间; (Ⅱ)若对任意b>2e2,函数f(x)有两个不同的零点,求a的取值范围; (Ⅲ)当a=e时,证明:对任意b>e4,函数f(x)有两个不同的零点x1,x2,满足x2>blnb2e2x1+e2b. (注:e=2.71828⋯是自然对数的底数) 分析:(Ⅰ)对函数f(x)求导,然后分b⩽0及b>0两种情况讨论即可得出单调性情况; (Ⅱ)易知只需f(x)min=f(lnblnalna)<0即可,计算可知b−b⋅lnblna+e2lna<0对任意b>2e2均成立,记g(b)=b−b⋅lnblna+e2lna,b>2e2,对g(b)求导,然后分 lna>2e2及lna⩽2e2两种情况讨论,求得g(b)的最大值,令其小于零即可得解; (Ⅲ)当a=e时,由f(x)的最小值小于零,可知其有两个零点,所证不等式可转化为ex2>b2lnb2e2x1,利用单调性先证x1<2e2b,问题转化为证x2>ln(blnb),再利用单调性证明即可. 解:(Ⅰ)f′(x)=axlna−b, ①当b⩽0时,由于a>1,则axlna>0,故f′(x)>0,此时f(x)在R上单调递增; ②当b>0时,令f′(x)>0,解得x>lnblnalna,令f′(x)<0,解得x<lnblnalna, ∴此时f(x)在(-\infty ,\dfrac{ln\dfrac{b}{lna}}{lna})单调递减,在(\dfrac{ln\dfrac{b}{lna}}{lna},+\infty )单调递增; 综上,当b\leqslant 0时,f(x)的单调递增区间为(-\infty ,+\infty );当b>0时,f(x)的单调递减区间为(-\infty ,\dfrac{ln\dfrac{b}{lna}}{lna}),单调递增区间为(\dfrac{ln\dfrac{b}{lna}}{lna},+\infty ); (Ⅱ)注意到x\rarr -\infty时,f(x)\rarr +\infty,当x\rarr +\infty时,f(x)\rarr +\infty, 由(Ⅰ)知,要使函数f(x)有两个不同的零点,只需f(x)_{min}=f(\dfrac{ln\dfrac{b}{lna}}{lna})<0即可, \thereforea\dfrac{ln\dfrac{b}{lna}}{lna}-b\cdot \dfrac{ln\dfrac{b}{lna}}{lna}+{e}^{2}<0对任意b>2e^{2}均成立, 令t=\dfrac{ln\dfrac{b}{lna}}{lna},则a^{t}-bt+e^{2}<0,即e^{tlna}-bt+e^{2}<0,即{e}^{ln\dfrac{b}{lna}}-b\cdot \dfrac{ln\dfrac{b}{lna}}{lna}+{e}^{2}<0,即\dfrac{b}{lna}-b\cdot \dfrac{ln\dfrac{b}{lna}}{lna}+{e}^{2}<0, \thereforeb-b\cdot ln\dfrac{b}{lna}+{e}^{2}lna<0对任意b>2e^{2}均成立, 记g(b)=b-b\cdot ln\dfrac{b}{lna}+{e}^{2}lna,b>2{e}^{2},则{g}'(b)=1-(ln\dfrac{b}{lna}+b\cdot \dfrac{lna}{b}\cdot \dfrac{1}{lna})=ln(lna)-lnb, 令g\prime(b)=0,得b=lna, ①当lna>2e^{2},即a>{e}^{2{e}^{2}}时,易知g(b)在(2e^{2},lna)单调递增,在(lna,+\infty )单调递减, 此时g(b)\leqslant g(lna)=lna-lna\cdot ln1+e^{2}lna=lna\cdot (e^{2}+1)>0,不合题意; ②当lna\leqslant 2e^{2},即1<a\leqslant {e}^{2{e}^{2}}时,易知g(b)在(2e^{2},+\infty )单调递减, 此时g(b)<g(2{e}^{2})=2{e}^{2}-2{e}^{2}\cdot ln\dfrac{2{e}^{2}}{lna}+{e}^{2}lna=2e^{2}-2e^{2}[ln(2e^{2})-ln(lna)]+e^{2}lna, 故只需2-2[ln2+2-ln(lna)]+lna\leqslant 0,即lna+2ln(lna)\leqslant 2+2ln2,则lna\leqslant 2,即a\leqslant e^{2}; 综上,实数a的取值范围为(1,e^{2}]; (Ⅲ)证明:当a=e时,f(x)=e^{x}-bx+e^{2},f\prime (x)=e^{x}-b,令f\prime (x)=0,解得x=lnb>4, 易知f(x)_{min}=f(lnb)={e}^{lnb}-b\cdot lnb+{e}^{2}=b-blnb+{e}^{2}<b-4b+e^{2}=e^{2}-3b<e^{2}-3e^{4}=e^{2}(1-3e^{2})<0, \therefore f(x)有两个零点,不妨设为x_{1},x_{2},且x_{1}<lnb<x_{2}, 由f({x}_{2})={e}^{{x}_{2}}-b{x}_{2}+{e}^{2}=0,可得{x}_{2}=\dfrac{{e}^{{x}_{2}}}{b}+\dfrac{{e}^{2}}{b}, \therefore要证{x}_{2}>\dfrac{blnb}{2{e}^{2}}{x}_{1}+\dfrac{{e}^{2}}{b},只需证\dfrac{{e}^{{x}_{2}}}{b}>\dfrac{blnb}{2{e}^{2}}{x}_{1},只需证{e}^{{x}_{2}}>\dfrac{{b}^{2}lnb}{2{e}^{2}}{x}_{1}, 而f(\dfrac{2{e}^{2}}{b})={e}^{\dfrac{2{e}^{2}}{b}}-2{e}^{2}+{e}^{2}={e}^{\dfrac{2{e}^{2}}{b}}-{e}^{2}<{e}^{\dfrac{2}{{e}^{2}}}-{e}^{2}<0,则{x}_{1}<\dfrac{2{e}^{2}}{b}, \therefore要证{e}^{{x}_{2}}>\dfrac{{b}^{2}lnb}{2{e}^{2}}{x}_{1},只需证{e}^{{x}_{2}}>blnb,只需证x_{2}>ln(blnb), 而f(ln(blnb))=e^{ln(blnb)}-bln(blnb)+e^{2}=blnb-bln(blnb)+e^{2}<blnb-bln(4b)+e^{2}=b\cdot ln\dfrac{1}{4}+{e}^{2}={e}^{2}-bln4<0, \therefore x_{2}>ln(blnb),即得证. 点评:本题考查导数的综合运用,涉及了利用导数研究函数的单调性,极值及最值,考查分类讨论思想,转化思想,考查推理论证能力及运算求解能力,属于难题.
|
|
http://x.91apu.com//shuxue/gkt/2021/2021zj/2022-05-03/33354.html |